Abstract

High sensitivity detection of O2 in the near infrared with short external cavity (SXC) AlGaAs semiconductor diode lasers is reported. The mode control provided by the SXC enhances the performance of these diode lasers by allowing a number of single laser modes (up to ten) to be individually selected and continuously scanned over extended frequency intervals. At a constant laser heat sink temperature, this provides nearly complete spectral coverage of up to ≈40 cm−1 for overlapping modes. When using second harmonic detection techniques, these SXC controlled lasers were found to provide high sensitivity detection of O2 at atmospheric pressure. A minimum detectable absorbance of ≈4 × 10−6 has been achieved with a SNR of 1. The stability of these laser systems has also allowed the continuous monitoring of an absorption signal over extended time intervals. Absorbances of 1 × 10−2 have been continuously monitored for durations of up to 15 h with an rms uncertainty of ±6 × 10−5. These results are reproducible for measurements made on all the laser modes that could be selected with the SXC.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Raab, K. Hoffmann, M. Gabbert, M. V. Glushkov, Yu. V. Kosichkin, “Application of a Diode Laser with an External Resonator in High Resolution Spectroscopy,” Sov. J. Quantum Electron. 11, 1068–1071 (1981).
    [CrossRef]
  2. P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, “High Frequency Wavelength Modulation Spectroscopy with Diode Lasers,” Opt. Commun. 44, 175–179 (1983).
    [CrossRef]
  3. K. Fukuoka, M. Ohtsu, T. Tako, “Accurate Wavelength Measurements of the Absorption Lines in H2O Vapor by a 0.8-μm AlGaAs Laser,” Jpn. J. Appl. Phys. 23, L117–L120 (1984).
    [CrossRef]
  4. H. Sasada, “Stark-Modulation Spectroscopy of NH3 With a 1.23-μm Semiconductor Laser,” Opt. Lett. 9, 448–450 (1984).
    [CrossRef] [PubMed]
  5. W. P. Hess, S. J. Kohler, H. K. Haugen, S. R. Leone, “Application of an InGaAsP Diode Laser to Probe Photodissociation Dynamics: I* Quantum Yields from n- and i-C3F7I and CH3I by Laser Gain vs Absorption Spectroscopy,” J. Chem. Phys. 84, 2143–2149 (1986).
    [CrossRef]
  6. T. Gustavsson, H. Martin, “Low-Cost High-Resolution Laser Spectrometer System in the Near Infrared Region Using a GaAlAs Diode Laser,” Rev. Sci. Instrum. 57, 1132–1134 (1986).
    [CrossRef]
  7. K. Nakagawa, T. Shimizu, “Highly Sensitive Spectrometer With 0.78-μm AlGaAs Diode Lasers,” Jpn. J. Appl. Phys. 26, L1697–L1700 (1987).
    [CrossRef]
  8. M. Ohtsu, H. Kotani, H. Tagawa, “Spectral Measurements of NH3 and H2O for Pollutant Gas Monitoring by 1.5-μm InGaAsP/InP Lasers,” Jpn. J. Appl. Phys. 22, 1553–1557 (1983).
    [CrossRef]
  9. W. Lenth, M. Gehrtz, “Sensitive Detection of NO2 Using High Frequency Heterodyne Spectroscopy with a GaAlAs Diode Laser,” Appl. Phys. Lett. 47, 1263–1265 (1985).
    [CrossRef]
  10. K. Uehara, “Signal Recording and Averaging in Diode-Laser Spectroscopy,” Opt. Lett. 12, 81–83 (1987).
    [CrossRef] [PubMed]
  11. M. Kroll, J. A. McClintock, O. Ollinger, “Measurement of Gaseous Oxygen Using Diode Laser Spectroscopy,” Appl. Phys. Lett. 51, 1465–1467 (1987).
    [CrossRef]
  12. D. T. Cassidy, “Trace Gas Detection Using 1.3-μm InGaAsP Diode Laser Transmitter Modules,” Appl. Opt. 27, 610–614 (1988).
    [CrossRef] [PubMed]
  13. L. Wang, H. Riris, C. B. Carlisle, T. F. Gallagher, “Comparison of Approaches to Modulation Spectroscopy with GaAlAs Semiconductor Lasers: Application to Water Vapor,” Appl. Opt. 27, 2071–2077 (1988).
    [CrossRef] [PubMed]
  14. D. T. Cassidy, L. J. Bonnell, “Trace Gas Detection with Short-External-Cavity InGaAsP Diode Laser Transmitter Modules Operating at 1.58 μm,” Appl. Opt. 27, 2688–2693 (1988).
    [CrossRef] [PubMed]
  15. A. C. Stanton, J. A. Silver, “Measurements in the HCl 3 ← 0 Band Using a Near-IR InGaAsP Diode Laser,” Appl. Opt. 27, 5009–5015 (1988).
    [CrossRef] [PubMed]
  16. J. A. Silver, A. C. Stanton, “Two-Tone Optical Heterodyne Spectroscopy Using Buried Heterostructure Lead-Salt Diode Lasers,” Appl. Opt. 27, 4438–4444 (1988).
    [CrossRef] [PubMed]
  17. L. J. Bonnell, D. T. Cassidy, “Alignment Tolerances of Short-External-Cavity InGaAsP Diode Lasers for Use as Tunable Single-Mode Sources,” Appl. Opt. 28, 4622–4628 (1989).
    [CrossRef] [PubMed]
  18. L. S. Rothman et al., “The HITRAN Database: 1986 Edition,” Appl. Opt. 26, 4058–4097 (1987).
    [CrossRef] [PubMed]

1989 (1)

1988 (5)

1987 (4)

L. S. Rothman et al., “The HITRAN Database: 1986 Edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

K. Uehara, “Signal Recording and Averaging in Diode-Laser Spectroscopy,” Opt. Lett. 12, 81–83 (1987).
[CrossRef] [PubMed]

M. Kroll, J. A. McClintock, O. Ollinger, “Measurement of Gaseous Oxygen Using Diode Laser Spectroscopy,” Appl. Phys. Lett. 51, 1465–1467 (1987).
[CrossRef]

K. Nakagawa, T. Shimizu, “Highly Sensitive Spectrometer With 0.78-μm AlGaAs Diode Lasers,” Jpn. J. Appl. Phys. 26, L1697–L1700 (1987).
[CrossRef]

1986 (2)

W. P. Hess, S. J. Kohler, H. K. Haugen, S. R. Leone, “Application of an InGaAsP Diode Laser to Probe Photodissociation Dynamics: I* Quantum Yields from n- and i-C3F7I and CH3I by Laser Gain vs Absorption Spectroscopy,” J. Chem. Phys. 84, 2143–2149 (1986).
[CrossRef]

T. Gustavsson, H. Martin, “Low-Cost High-Resolution Laser Spectrometer System in the Near Infrared Region Using a GaAlAs Diode Laser,” Rev. Sci. Instrum. 57, 1132–1134 (1986).
[CrossRef]

1985 (1)

W. Lenth, M. Gehrtz, “Sensitive Detection of NO2 Using High Frequency Heterodyne Spectroscopy with a GaAlAs Diode Laser,” Appl. Phys. Lett. 47, 1263–1265 (1985).
[CrossRef]

1984 (2)

K. Fukuoka, M. Ohtsu, T. Tako, “Accurate Wavelength Measurements of the Absorption Lines in H2O Vapor by a 0.8-μm AlGaAs Laser,” Jpn. J. Appl. Phys. 23, L117–L120 (1984).
[CrossRef]

H. Sasada, “Stark-Modulation Spectroscopy of NH3 With a 1.23-μm Semiconductor Laser,” Opt. Lett. 9, 448–450 (1984).
[CrossRef] [PubMed]

1983 (2)

P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, “High Frequency Wavelength Modulation Spectroscopy with Diode Lasers,” Opt. Commun. 44, 175–179 (1983).
[CrossRef]

M. Ohtsu, H. Kotani, H. Tagawa, “Spectral Measurements of NH3 and H2O for Pollutant Gas Monitoring by 1.5-μm InGaAsP/InP Lasers,” Jpn. J. Appl. Phys. 22, 1553–1557 (1983).
[CrossRef]

1981 (1)

S. Raab, K. Hoffmann, M. Gabbert, M. V. Glushkov, Yu. V. Kosichkin, “Application of a Diode Laser with an External Resonator in High Resolution Spectroscopy,” Sov. J. Quantum Electron. 11, 1068–1071 (1981).
[CrossRef]

Bjorklund, G. C.

P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, “High Frequency Wavelength Modulation Spectroscopy with Diode Lasers,” Opt. Commun. 44, 175–179 (1983).
[CrossRef]

Bonnell, L. J.

Carlisle, C. B.

Cassidy, D. T.

Chu, F.

P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, “High Frequency Wavelength Modulation Spectroscopy with Diode Lasers,” Opt. Commun. 44, 175–179 (1983).
[CrossRef]

Fukuoka, K.

K. Fukuoka, M. Ohtsu, T. Tako, “Accurate Wavelength Measurements of the Absorption Lines in H2O Vapor by a 0.8-μm AlGaAs Laser,” Jpn. J. Appl. Phys. 23, L117–L120 (1984).
[CrossRef]

Gabbert, M.

S. Raab, K. Hoffmann, M. Gabbert, M. V. Glushkov, Yu. V. Kosichkin, “Application of a Diode Laser with an External Resonator in High Resolution Spectroscopy,” Sov. J. Quantum Electron. 11, 1068–1071 (1981).
[CrossRef]

Gallagher, T. F.

Gehrtz, M.

W. Lenth, M. Gehrtz, “Sensitive Detection of NO2 Using High Frequency Heterodyne Spectroscopy with a GaAlAs Diode Laser,” Appl. Phys. Lett. 47, 1263–1265 (1985).
[CrossRef]

Glushkov, M. V.

S. Raab, K. Hoffmann, M. Gabbert, M. V. Glushkov, Yu. V. Kosichkin, “Application of a Diode Laser with an External Resonator in High Resolution Spectroscopy,” Sov. J. Quantum Electron. 11, 1068–1071 (1981).
[CrossRef]

Gustavsson, T.

T. Gustavsson, H. Martin, “Low-Cost High-Resolution Laser Spectrometer System in the Near Infrared Region Using a GaAlAs Diode Laser,” Rev. Sci. Instrum. 57, 1132–1134 (1986).
[CrossRef]

Haugen, H. K.

W. P. Hess, S. J. Kohler, H. K. Haugen, S. R. Leone, “Application of an InGaAsP Diode Laser to Probe Photodissociation Dynamics: I* Quantum Yields from n- and i-C3F7I and CH3I by Laser Gain vs Absorption Spectroscopy,” J. Chem. Phys. 84, 2143–2149 (1986).
[CrossRef]

Hess, W. P.

W. P. Hess, S. J. Kohler, H. K. Haugen, S. R. Leone, “Application of an InGaAsP Diode Laser to Probe Photodissociation Dynamics: I* Quantum Yields from n- and i-C3F7I and CH3I by Laser Gain vs Absorption Spectroscopy,” J. Chem. Phys. 84, 2143–2149 (1986).
[CrossRef]

Hoffmann, K.

S. Raab, K. Hoffmann, M. Gabbert, M. V. Glushkov, Yu. V. Kosichkin, “Application of a Diode Laser with an External Resonator in High Resolution Spectroscopy,” Sov. J. Quantum Electron. 11, 1068–1071 (1981).
[CrossRef]

Kohler, S. J.

W. P. Hess, S. J. Kohler, H. K. Haugen, S. R. Leone, “Application of an InGaAsP Diode Laser to Probe Photodissociation Dynamics: I* Quantum Yields from n- and i-C3F7I and CH3I by Laser Gain vs Absorption Spectroscopy,” J. Chem. Phys. 84, 2143–2149 (1986).
[CrossRef]

Kosichkin, Yu. V.

S. Raab, K. Hoffmann, M. Gabbert, M. V. Glushkov, Yu. V. Kosichkin, “Application of a Diode Laser with an External Resonator in High Resolution Spectroscopy,” Sov. J. Quantum Electron. 11, 1068–1071 (1981).
[CrossRef]

Kotani, H.

M. Ohtsu, H. Kotani, H. Tagawa, “Spectral Measurements of NH3 and H2O for Pollutant Gas Monitoring by 1.5-μm InGaAsP/InP Lasers,” Jpn. J. Appl. Phys. 22, 1553–1557 (1983).
[CrossRef]

Kroll, M.

M. Kroll, J. A. McClintock, O. Ollinger, “Measurement of Gaseous Oxygen Using Diode Laser Spectroscopy,” Appl. Phys. Lett. 51, 1465–1467 (1987).
[CrossRef]

Lenth, W.

W. Lenth, M. Gehrtz, “Sensitive Detection of NO2 Using High Frequency Heterodyne Spectroscopy with a GaAlAs Diode Laser,” Appl. Phys. Lett. 47, 1263–1265 (1985).
[CrossRef]

Leone, S. R.

W. P. Hess, S. J. Kohler, H. K. Haugen, S. R. Leone, “Application of an InGaAsP Diode Laser to Probe Photodissociation Dynamics: I* Quantum Yields from n- and i-C3F7I and CH3I by Laser Gain vs Absorption Spectroscopy,” J. Chem. Phys. 84, 2143–2149 (1986).
[CrossRef]

Martin, H.

T. Gustavsson, H. Martin, “Low-Cost High-Resolution Laser Spectrometer System in the Near Infrared Region Using a GaAlAs Diode Laser,” Rev. Sci. Instrum. 57, 1132–1134 (1986).
[CrossRef]

McClintock, J. A.

M. Kroll, J. A. McClintock, O. Ollinger, “Measurement of Gaseous Oxygen Using Diode Laser Spectroscopy,” Appl. Phys. Lett. 51, 1465–1467 (1987).
[CrossRef]

Nakagawa, K.

K. Nakagawa, T. Shimizu, “Highly Sensitive Spectrometer With 0.78-μm AlGaAs Diode Lasers,” Jpn. J. Appl. Phys. 26, L1697–L1700 (1987).
[CrossRef]

Ohtsu, M.

K. Fukuoka, M. Ohtsu, T. Tako, “Accurate Wavelength Measurements of the Absorption Lines in H2O Vapor by a 0.8-μm AlGaAs Laser,” Jpn. J. Appl. Phys. 23, L117–L120 (1984).
[CrossRef]

M. Ohtsu, H. Kotani, H. Tagawa, “Spectral Measurements of NH3 and H2O for Pollutant Gas Monitoring by 1.5-μm InGaAsP/InP Lasers,” Jpn. J. Appl. Phys. 22, 1553–1557 (1983).
[CrossRef]

Ollinger, O.

M. Kroll, J. A. McClintock, O. Ollinger, “Measurement of Gaseous Oxygen Using Diode Laser Spectroscopy,” Appl. Phys. Lett. 51, 1465–1467 (1987).
[CrossRef]

Pokrowsky, P.

P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, “High Frequency Wavelength Modulation Spectroscopy with Diode Lasers,” Opt. Commun. 44, 175–179 (1983).
[CrossRef]

Raab, S.

S. Raab, K. Hoffmann, M. Gabbert, M. V. Glushkov, Yu. V. Kosichkin, “Application of a Diode Laser with an External Resonator in High Resolution Spectroscopy,” Sov. J. Quantum Electron. 11, 1068–1071 (1981).
[CrossRef]

Riris, H.

Rothman, L. S.

Sasada, H.

Shimizu, T.

K. Nakagawa, T. Shimizu, “Highly Sensitive Spectrometer With 0.78-μm AlGaAs Diode Lasers,” Jpn. J. Appl. Phys. 26, L1697–L1700 (1987).
[CrossRef]

Silver, J. A.

Stanton, A. C.

Tagawa, H.

M. Ohtsu, H. Kotani, H. Tagawa, “Spectral Measurements of NH3 and H2O for Pollutant Gas Monitoring by 1.5-μm InGaAsP/InP Lasers,” Jpn. J. Appl. Phys. 22, 1553–1557 (1983).
[CrossRef]

Tako, T.

K. Fukuoka, M. Ohtsu, T. Tako, “Accurate Wavelength Measurements of the Absorption Lines in H2O Vapor by a 0.8-μm AlGaAs Laser,” Jpn. J. Appl. Phys. 23, L117–L120 (1984).
[CrossRef]

Uehara, K.

Wang, L.

Zapka, W.

P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, “High Frequency Wavelength Modulation Spectroscopy with Diode Lasers,” Opt. Commun. 44, 175–179 (1983).
[CrossRef]

Appl. Opt. (7)

Appl. Phys. Lett. (2)

W. Lenth, M. Gehrtz, “Sensitive Detection of NO2 Using High Frequency Heterodyne Spectroscopy with a GaAlAs Diode Laser,” Appl. Phys. Lett. 47, 1263–1265 (1985).
[CrossRef]

M. Kroll, J. A. McClintock, O. Ollinger, “Measurement of Gaseous Oxygen Using Diode Laser Spectroscopy,” Appl. Phys. Lett. 51, 1465–1467 (1987).
[CrossRef]

J. Chem. Phys. (1)

W. P. Hess, S. J. Kohler, H. K. Haugen, S. R. Leone, “Application of an InGaAsP Diode Laser to Probe Photodissociation Dynamics: I* Quantum Yields from n- and i-C3F7I and CH3I by Laser Gain vs Absorption Spectroscopy,” J. Chem. Phys. 84, 2143–2149 (1986).
[CrossRef]

Jpn. J. Appl. Phys. (3)

K. Nakagawa, T. Shimizu, “Highly Sensitive Spectrometer With 0.78-μm AlGaAs Diode Lasers,” Jpn. J. Appl. Phys. 26, L1697–L1700 (1987).
[CrossRef]

M. Ohtsu, H. Kotani, H. Tagawa, “Spectral Measurements of NH3 and H2O for Pollutant Gas Monitoring by 1.5-μm InGaAsP/InP Lasers,” Jpn. J. Appl. Phys. 22, 1553–1557 (1983).
[CrossRef]

K. Fukuoka, M. Ohtsu, T. Tako, “Accurate Wavelength Measurements of the Absorption Lines in H2O Vapor by a 0.8-μm AlGaAs Laser,” Jpn. J. Appl. Phys. 23, L117–L120 (1984).
[CrossRef]

Opt. Commun. (1)

P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, “High Frequency Wavelength Modulation Spectroscopy with Diode Lasers,” Opt. Commun. 44, 175–179 (1983).
[CrossRef]

Opt. Lett. (2)

Rev. Sci. Instrum. (1)

T. Gustavsson, H. Martin, “Low-Cost High-Resolution Laser Spectrometer System in the Near Infrared Region Using a GaAlAs Diode Laser,” Rev. Sci. Instrum. 57, 1132–1134 (1986).
[CrossRef]

Sov. J. Quantum Electron. (1)

S. Raab, K. Hoffmann, M. Gabbert, M. V. Glushkov, Yu. V. Kosichkin, “Application of a Diode Laser with an External Resonator in High Resolution Spectroscopy,” Sov. J. Quantum Electron. 11, 1068–1071 (1981).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Second harmonic absorption signals as a function of optical frequency for transmission over a 21-m path length at atmospheric pressure are shown. The drive current was varied by 12 mA to obtain the tuning. (a) An 16O—16O transition at 13093.645 cm−1 is seen. (b) With a 20× expanded vertical scale this same scan reveals two additional transitions due to 16O—18O at 13093.822 cm−1 and at 13095.389 cm−1. The positions of these transitions are indicated by the arrows.

Fig. 2
Fig. 2

Second harmonic absorption signals for an 16O18O transition at 13095.389 cm−1 taken on three different days. These signals were recorded for a 20-cm path length at atmospheric pressure and they represent a peak absorbance of 8.7 × 10−6. A lock-in amplifier time constant of 100 msec was used when recording these signals.

Fig. 3
Fig. 3

(a) Second harmonic absorption signal (absorbance of 1.0 × 10−2) for the 16O—16O transition at 13069.953 cm−1 for a 55 cm path length in air. (b) Beside (a) is the same absorption signal on which the laser has been line-locked for a period of 15 hours. (c) Same signal is expanded and calibrated with respect to the absorbance of the transition. (d) The off-line signal is shown for a 30-min scan.

Metrics