Abstract

An incoherent, frequency modulated continuous wave optical reflectomer is described which utilizes a broadband LiNbO3 electrooptic modulator and slow photodiode for optical downconversion and detection, and a waveform recorder for digital spectrum analysis of the incoming signal. A two-point resolution of 6.8 cm in fiber is achieved. The dynamic range, defined as the location of the system noise floor relative to the maximum producible signal, is 50-dB optical.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. David W. Dolfi, M. Nazarathy, S. A. Newton, “5-mm Resolution Optical Frequency Domain Reflectometry Using a Coded Phase-Reversal Modulator,” Opt. Lett. 13, 678–680 (1988).
    [CrossRef] [PubMed]
  2. D. W. Dolfi, M. Nazarathy, “Optical Frequency Domain Reflectometry with High Sensitivity and Resolution Using Optical Synchronous Detection with Coded Modulators,” Elec. Lett. 25, 160–162 (1989).
    [CrossRef]
  3. A. J. Hymans, J. Lait, “Analysis of a Frequency Modulated Continuous-Wave Ranging System,” Proc. IEE, 107B, 365–372 (1960).
  4. D. Uttam, B. Culshaw, “Precision Time Domain Reflectometry in Optical Fiber Systems Using a Frequency Modulated Continuous Wave Ranging Technique,” IEEE/OSA J. Lightwave Technol. LT-3, 971–977 (1985).
    [CrossRef]
  5. R. I. MacDonald, “Frequency Domain Optical Reflectometer,” Appl. Opt. 20, 1840–1844 (1981).
    [CrossRef] [PubMed]
  6. See, for example, B. H. Kolner, D. W. Dolfi, “Intermodulation Distortion and Compression in an Integrated Electrooptic Modulator,” Appl. Opt. 26, 3676–3680 (1987) and references therein.
    [CrossRef] [PubMed]
  7. R. L. Jungerman, C. A. Johnsen, D. W. Dolfi, M. Nazarathy, “Coded Phase-Reversal LiNbO3 Modulator with Bandwidth Greater than 20 GHz,” Electron. Lett. 23, 172–174 (1987).
    [CrossRef]
  8. K. I. Mallalieu, “Investigation into the Optical Activation and Fibre Optic Multiplexed Interrogation of Vibrating Sensors,” PhD thesis, Dept. of Electronic and Electrical Engineering, University College, London, 1987.

1989 (1)

D. W. Dolfi, M. Nazarathy, “Optical Frequency Domain Reflectometry with High Sensitivity and Resolution Using Optical Synchronous Detection with Coded Modulators,” Elec. Lett. 25, 160–162 (1989).
[CrossRef]

1988 (1)

1987 (2)

See, for example, B. H. Kolner, D. W. Dolfi, “Intermodulation Distortion and Compression in an Integrated Electrooptic Modulator,” Appl. Opt. 26, 3676–3680 (1987) and references therein.
[CrossRef] [PubMed]

R. L. Jungerman, C. A. Johnsen, D. W. Dolfi, M. Nazarathy, “Coded Phase-Reversal LiNbO3 Modulator with Bandwidth Greater than 20 GHz,” Electron. Lett. 23, 172–174 (1987).
[CrossRef]

1985 (1)

D. Uttam, B. Culshaw, “Precision Time Domain Reflectometry in Optical Fiber Systems Using a Frequency Modulated Continuous Wave Ranging Technique,” IEEE/OSA J. Lightwave Technol. LT-3, 971–977 (1985).
[CrossRef]

1981 (1)

1960 (1)

A. J. Hymans, J. Lait, “Analysis of a Frequency Modulated Continuous-Wave Ranging System,” Proc. IEE, 107B, 365–372 (1960).

Culshaw, B.

D. Uttam, B. Culshaw, “Precision Time Domain Reflectometry in Optical Fiber Systems Using a Frequency Modulated Continuous Wave Ranging Technique,” IEEE/OSA J. Lightwave Technol. LT-3, 971–977 (1985).
[CrossRef]

Dolfi, D. W.

D. W. Dolfi, M. Nazarathy, “Optical Frequency Domain Reflectometry with High Sensitivity and Resolution Using Optical Synchronous Detection with Coded Modulators,” Elec. Lett. 25, 160–162 (1989).
[CrossRef]

See, for example, B. H. Kolner, D. W. Dolfi, “Intermodulation Distortion and Compression in an Integrated Electrooptic Modulator,” Appl. Opt. 26, 3676–3680 (1987) and references therein.
[CrossRef] [PubMed]

R. L. Jungerman, C. A. Johnsen, D. W. Dolfi, M. Nazarathy, “Coded Phase-Reversal LiNbO3 Modulator with Bandwidth Greater than 20 GHz,” Electron. Lett. 23, 172–174 (1987).
[CrossRef]

Dolfi, David W.

Hymans, A. J.

A. J. Hymans, J. Lait, “Analysis of a Frequency Modulated Continuous-Wave Ranging System,” Proc. IEE, 107B, 365–372 (1960).

Johnsen, C. A.

R. L. Jungerman, C. A. Johnsen, D. W. Dolfi, M. Nazarathy, “Coded Phase-Reversal LiNbO3 Modulator with Bandwidth Greater than 20 GHz,” Electron. Lett. 23, 172–174 (1987).
[CrossRef]

Jungerman, R. L.

R. L. Jungerman, C. A. Johnsen, D. W. Dolfi, M. Nazarathy, “Coded Phase-Reversal LiNbO3 Modulator with Bandwidth Greater than 20 GHz,” Electron. Lett. 23, 172–174 (1987).
[CrossRef]

Kolner, B. H.

Lait, J.

A. J. Hymans, J. Lait, “Analysis of a Frequency Modulated Continuous-Wave Ranging System,” Proc. IEE, 107B, 365–372 (1960).

MacDonald, R. I.

Mallalieu, K. I.

K. I. Mallalieu, “Investigation into the Optical Activation and Fibre Optic Multiplexed Interrogation of Vibrating Sensors,” PhD thesis, Dept. of Electronic and Electrical Engineering, University College, London, 1987.

Nazarathy, M.

D. W. Dolfi, M. Nazarathy, “Optical Frequency Domain Reflectometry with High Sensitivity and Resolution Using Optical Synchronous Detection with Coded Modulators,” Elec. Lett. 25, 160–162 (1989).
[CrossRef]

David W. Dolfi, M. Nazarathy, S. A. Newton, “5-mm Resolution Optical Frequency Domain Reflectometry Using a Coded Phase-Reversal Modulator,” Opt. Lett. 13, 678–680 (1988).
[CrossRef] [PubMed]

R. L. Jungerman, C. A. Johnsen, D. W. Dolfi, M. Nazarathy, “Coded Phase-Reversal LiNbO3 Modulator with Bandwidth Greater than 20 GHz,” Electron. Lett. 23, 172–174 (1987).
[CrossRef]

Newton, S. A.

Uttam, D.

D. Uttam, B. Culshaw, “Precision Time Domain Reflectometry in Optical Fiber Systems Using a Frequency Modulated Continuous Wave Ranging Technique,” IEEE/OSA J. Lightwave Technol. LT-3, 971–977 (1985).
[CrossRef]

Appl. Opt. (2)

Elec. Lett. (1)

D. W. Dolfi, M. Nazarathy, “Optical Frequency Domain Reflectometry with High Sensitivity and Resolution Using Optical Synchronous Detection with Coded Modulators,” Elec. Lett. 25, 160–162 (1989).
[CrossRef]

Electron. Lett. (1)

R. L. Jungerman, C. A. Johnsen, D. W. Dolfi, M. Nazarathy, “Coded Phase-Reversal LiNbO3 Modulator with Bandwidth Greater than 20 GHz,” Electron. Lett. 23, 172–174 (1987).
[CrossRef]

IEEE/OSA J. Lightwave Technol. (1)

D. Uttam, B. Culshaw, “Precision Time Domain Reflectometry in Optical Fiber Systems Using a Frequency Modulated Continuous Wave Ranging Technique,” IEEE/OSA J. Lightwave Technol. LT-3, 971–977 (1985).
[CrossRef]

Opt. Lett. (1)

Proc. IEE (1)

A. J. Hymans, J. Lait, “Analysis of a Frequency Modulated Continuous-Wave Ranging System,” Proc. IEE, 107B, 365–372 (1960).

Other (1)

K. I. Mallalieu, “Investigation into the Optical Activation and Fibre Optic Multiplexed Interrogation of Vibrating Sensors,” PhD thesis, Dept. of Electronic and Electrical Engineering, University College, London, 1987.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for optical incoherent FMCW measurements. The receiver block (shaded) utilizes a wide-bandwidth electrooptic modulator and a low bandwidth optical receiver to achieve mixing.

Fig. 2
Fig. 2

FMCW beat frequency signal for a fixed length of fiber with 3-dB additional optical attenuation.

Fig. 3
Fig. 3

FMCW beat signal for the fiber coupler of Fig. 1. The two peaks correspond to the discrete reflections from the two ends.

Fig. 4
Fig. 4

Beat signal from the same network as Fig. 3. Frequency scale expanded by four times.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T d = T r F b F s ,
Δ t = Δ F b T r F s .
( Δ t ) res = 1 0.95 F s .
( Δ x ) r e s = 0.5 c 0.95 n F s ,

Metrics