Abstract

A technique is proposed that allows accurate determination of the magnetooptic rotation and ellipticity requires only a few standard optical elements and is expected to be effective over a angles. This method relatively wide range of wavelengths.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Suzuki, C.-J. Lin, A. E. Bell, “Magnetic and Magneto-Optical Properties of Nd-Tb-Fe-Co Vertically Magnetized Films,” IEEE Trans. Magnet. 24, 2452–2454 (1988).
    [CrossRef]
  2. Y. Yamanaka, K. Kubota, H. Fujii, K. Kobayashi, T. Suzuki, H. Gokan, “High Density Magneto-Optical Recording Using 0.67 μm Band High Power Laser Diode,” IEEE Trans. Magnet. 24, 2300–2304 (1988).
    [CrossRef]
  3. D. Weller, W. Reim, H. Ebert, D. Johnson, F. Pinski, “Correlation Between Bandstructure and Magneto-Optical Properties of BCC FexCo1−x,” Journal De Physique, Colloque C8, Supplement au n∘ 12, Tome 49, 41–42 (1988).
  4. J. C. Kemp, M. S. Barbour, “A Photoelastic Modulator Polarimeter at Pine Mountain Observatory,” Publications of the Astronomical Society of the Pacific, 93, 521–525 (1981).
    [CrossRef]
  5. J. C. Kemp, “Piezo-Optical Birefringence Modulators: New Use for a Long-Known Effect,” J. Opt. Soc. Am. 59, 950–954 (1969).
  6. K. W. Hipps, G. A. Crosby, “Applications of the Photoelastic Modulator to Polarization Spectroscopy,” J. Phys. Chem. 83, 555–562 (1979).
    [CrossRef]
  7. Optics For Research (OFR) Corporation, Precision Optical Components Catalogue. According to this catalogue, the glass rhomb is accurate to within 2° in the range 400–700 nm. The numbers given in the paper for the extended wavelength range were obtained by contacting the company.
  8. R. W. Wood, Physical Optics, 3rd edition, published by the Optical Society of America, 1988.
  9. W. L. Wolf, “Properties of Optical Materials,” in Handbook of Optics, Eds. (W. G. Driscoll, W. Vaughan, McGraw-Hill, New York, 1978).
  10. EG&G Corporation, Photon Devices Catalogue. See the responsivity curve for DT-110 photodiode.

1988 (3)

T. Suzuki, C.-J. Lin, A. E. Bell, “Magnetic and Magneto-Optical Properties of Nd-Tb-Fe-Co Vertically Magnetized Films,” IEEE Trans. Magnet. 24, 2452–2454 (1988).
[CrossRef]

Y. Yamanaka, K. Kubota, H. Fujii, K. Kobayashi, T. Suzuki, H. Gokan, “High Density Magneto-Optical Recording Using 0.67 μm Band High Power Laser Diode,” IEEE Trans. Magnet. 24, 2300–2304 (1988).
[CrossRef]

D. Weller, W. Reim, H. Ebert, D. Johnson, F. Pinski, “Correlation Between Bandstructure and Magneto-Optical Properties of BCC FexCo1−x,” Journal De Physique, Colloque C8, Supplement au n∘ 12, Tome 49, 41–42 (1988).

1981 (1)

J. C. Kemp, M. S. Barbour, “A Photoelastic Modulator Polarimeter at Pine Mountain Observatory,” Publications of the Astronomical Society of the Pacific, 93, 521–525 (1981).
[CrossRef]

1979 (1)

K. W. Hipps, G. A. Crosby, “Applications of the Photoelastic Modulator to Polarization Spectroscopy,” J. Phys. Chem. 83, 555–562 (1979).
[CrossRef]

1969 (1)

Barbour, M. S.

J. C. Kemp, M. S. Barbour, “A Photoelastic Modulator Polarimeter at Pine Mountain Observatory,” Publications of the Astronomical Society of the Pacific, 93, 521–525 (1981).
[CrossRef]

Bell, A. E.

T. Suzuki, C.-J. Lin, A. E. Bell, “Magnetic and Magneto-Optical Properties of Nd-Tb-Fe-Co Vertically Magnetized Films,” IEEE Trans. Magnet. 24, 2452–2454 (1988).
[CrossRef]

Crosby, G. A.

K. W. Hipps, G. A. Crosby, “Applications of the Photoelastic Modulator to Polarization Spectroscopy,” J. Phys. Chem. 83, 555–562 (1979).
[CrossRef]

Ebert, H.

D. Weller, W. Reim, H. Ebert, D. Johnson, F. Pinski, “Correlation Between Bandstructure and Magneto-Optical Properties of BCC FexCo1−x,” Journal De Physique, Colloque C8, Supplement au n∘ 12, Tome 49, 41–42 (1988).

Fujii, H.

Y. Yamanaka, K. Kubota, H. Fujii, K. Kobayashi, T. Suzuki, H. Gokan, “High Density Magneto-Optical Recording Using 0.67 μm Band High Power Laser Diode,” IEEE Trans. Magnet. 24, 2300–2304 (1988).
[CrossRef]

Gokan, H.

Y. Yamanaka, K. Kubota, H. Fujii, K. Kobayashi, T. Suzuki, H. Gokan, “High Density Magneto-Optical Recording Using 0.67 μm Band High Power Laser Diode,” IEEE Trans. Magnet. 24, 2300–2304 (1988).
[CrossRef]

Hipps, K. W.

K. W. Hipps, G. A. Crosby, “Applications of the Photoelastic Modulator to Polarization Spectroscopy,” J. Phys. Chem. 83, 555–562 (1979).
[CrossRef]

Johnson, D.

D. Weller, W. Reim, H. Ebert, D. Johnson, F. Pinski, “Correlation Between Bandstructure and Magneto-Optical Properties of BCC FexCo1−x,” Journal De Physique, Colloque C8, Supplement au n∘ 12, Tome 49, 41–42 (1988).

Kemp, J. C.

J. C. Kemp, M. S. Barbour, “A Photoelastic Modulator Polarimeter at Pine Mountain Observatory,” Publications of the Astronomical Society of the Pacific, 93, 521–525 (1981).
[CrossRef]

J. C. Kemp, “Piezo-Optical Birefringence Modulators: New Use for a Long-Known Effect,” J. Opt. Soc. Am. 59, 950–954 (1969).

Kobayashi, K.

Y. Yamanaka, K. Kubota, H. Fujii, K. Kobayashi, T. Suzuki, H. Gokan, “High Density Magneto-Optical Recording Using 0.67 μm Band High Power Laser Diode,” IEEE Trans. Magnet. 24, 2300–2304 (1988).
[CrossRef]

Kubota, K.

Y. Yamanaka, K. Kubota, H. Fujii, K. Kobayashi, T. Suzuki, H. Gokan, “High Density Magneto-Optical Recording Using 0.67 μm Band High Power Laser Diode,” IEEE Trans. Magnet. 24, 2300–2304 (1988).
[CrossRef]

Lin, C.-J.

T. Suzuki, C.-J. Lin, A. E. Bell, “Magnetic and Magneto-Optical Properties of Nd-Tb-Fe-Co Vertically Magnetized Films,” IEEE Trans. Magnet. 24, 2452–2454 (1988).
[CrossRef]

Pinski, F.

D. Weller, W. Reim, H. Ebert, D. Johnson, F. Pinski, “Correlation Between Bandstructure and Magneto-Optical Properties of BCC FexCo1−x,” Journal De Physique, Colloque C8, Supplement au n∘ 12, Tome 49, 41–42 (1988).

Reim, W.

D. Weller, W. Reim, H. Ebert, D. Johnson, F. Pinski, “Correlation Between Bandstructure and Magneto-Optical Properties of BCC FexCo1−x,” Journal De Physique, Colloque C8, Supplement au n∘ 12, Tome 49, 41–42 (1988).

Suzuki, T.

T. Suzuki, C.-J. Lin, A. E. Bell, “Magnetic and Magneto-Optical Properties of Nd-Tb-Fe-Co Vertically Magnetized Films,” IEEE Trans. Magnet. 24, 2452–2454 (1988).
[CrossRef]

Y. Yamanaka, K. Kubota, H. Fujii, K. Kobayashi, T. Suzuki, H. Gokan, “High Density Magneto-Optical Recording Using 0.67 μm Band High Power Laser Diode,” IEEE Trans. Magnet. 24, 2300–2304 (1988).
[CrossRef]

Weller, D.

D. Weller, W. Reim, H. Ebert, D. Johnson, F. Pinski, “Correlation Between Bandstructure and Magneto-Optical Properties of BCC FexCo1−x,” Journal De Physique, Colloque C8, Supplement au n∘ 12, Tome 49, 41–42 (1988).

Wolf, W. L.

W. L. Wolf, “Properties of Optical Materials,” in Handbook of Optics, Eds. (W. G. Driscoll, W. Vaughan, McGraw-Hill, New York, 1978).

Wood, R. W.

R. W. Wood, Physical Optics, 3rd edition, published by the Optical Society of America, 1988.

Yamanaka, Y.

Y. Yamanaka, K. Kubota, H. Fujii, K. Kobayashi, T. Suzuki, H. Gokan, “High Density Magneto-Optical Recording Using 0.67 μm Band High Power Laser Diode,” IEEE Trans. Magnet. 24, 2300–2304 (1988).
[CrossRef]

IEEE Trans. Magnet. (2)

T. Suzuki, C.-J. Lin, A. E. Bell, “Magnetic and Magneto-Optical Properties of Nd-Tb-Fe-Co Vertically Magnetized Films,” IEEE Trans. Magnet. 24, 2452–2454 (1988).
[CrossRef]

Y. Yamanaka, K. Kubota, H. Fujii, K. Kobayashi, T. Suzuki, H. Gokan, “High Density Magneto-Optical Recording Using 0.67 μm Band High Power Laser Diode,” IEEE Trans. Magnet. 24, 2300–2304 (1988).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. Chem. (1)

K. W. Hipps, G. A. Crosby, “Applications of the Photoelastic Modulator to Polarization Spectroscopy,” J. Phys. Chem. 83, 555–562 (1979).
[CrossRef]

Journal De Physique, Colloque C8 (1)

D. Weller, W. Reim, H. Ebert, D. Johnson, F. Pinski, “Correlation Between Bandstructure and Magneto-Optical Properties of BCC FexCo1−x,” Journal De Physique, Colloque C8, Supplement au n∘ 12, Tome 49, 41–42 (1988).

Publications of the Astronomical Society of the Pacific (1)

J. C. Kemp, M. S. Barbour, “A Photoelastic Modulator Polarimeter at Pine Mountain Observatory,” Publications of the Astronomical Society of the Pacific, 93, 521–525 (1981).
[CrossRef]

Other (4)

Optics For Research (OFR) Corporation, Precision Optical Components Catalogue. According to this catalogue, the glass rhomb is accurate to within 2° in the range 400–700 nm. The numbers given in the paper for the extended wavelength range were obtained by contacting the company.

R. W. Wood, Physical Optics, 3rd edition, published by the Optical Society of America, 1988.

W. L. Wolf, “Properties of Optical Materials,” in Handbook of Optics, Eds. (W. G. Driscoll, W. Vaughan, McGraw-Hill, New York, 1978).

EG&G Corporation, Photon Devices Catalogue. See the responsivity curve for DT-110 photodiode.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the proposed system for the measurement of magnetooptical rotation and ellipticity angles.

Fig. 2
Fig. 2

Calculated values of phase retardation versus wavelength for a Fresnel rhomb made from fused silica. The assumed angle of incidence at the glass/air interface is Θ = 54°.

Fig. 3
Fig. 3

Calculated signals (S1S2)/(S1 + S2) for up and down states of magnetization of the sample and the difference between them. The assumed magnetooptic parameters of the sample are rx = 0.7, ry = 0.005 and ϕyϕx = 23°. In (a) the quarterwave plate is perfect, i.e., δ = 0. In (b) and (c) the values of the phase error are δ = 4° and δ = 8°, respectively.

Fig. 4
Fig. 4

Measured signals (S1S2)/(S1 + S2) for up and down states of magnetization of a TbFeCo sample and the difference between them. The curves are obtained by matching the experimental data with appropriate polynomial functions.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

r x x ^ + r y y ^ = r - x ^ + i y ^ 2 + r + x ^ - i y ^ 2 .
θ k = ϕ + - ϕ - 2 ,
tan k = r + - r - r + + r - .
tan ( 2 θ k ) = + 2 | r y r x | 1 - | r y r x | 2 cos ( ϕ y - ϕ x ) ,
sin ( 2 k ) = - 2 | r y r x | 1 + | r y r x | 2 sin ( ϕ y - ϕ x ) .
| r y r x | 2 = tan 2 θ k + tan 2 k 1 + tan 2 θ k tan 2 k ,
tan ( ϕ y - ϕ x ) = - tan ( 2 k ) sin ( 2 θ k ) .
tan ( Δ 2 ) = cos Θ n 2 sin 2 Θ - 1 n sin 2 Θ .
( 1 0 0 i exp ( i δ ) ) .
S 1 + S 2 = P 0 ( r x 2 + r y 2 ) ,
S 1 - S 2 = P 0 ( r x 2 - r y 2 ) [ cos ( 2 ζ ) cos ( 2 η - 2 ζ ) + sin ( 2 ζ ) sin ( 2 η - 2 ζ ) sin δ ] ± 2 P 0 r x r y { sin ( 2 ζ ) cos ( 2 η - 2 ζ ) cos ( ϕ y - ϕ x ) - sin ( 2 η - 2 ζ ) × [ sin 2 ζ sin ( ϕ y - ϕ x - δ ) + cos 2 ζ × sin ( ϕ y - ϕ x + δ ) ] } .
S 1 - S 2 S 1 + S 2 = - r x 2 - r y 2 r x 2 + r y 2 cos ( 2 η ) sin δ ± 2 r x r y r x 2 + r y 2 [ sin ( 2 η ) cos ( ϕ y - ϕ x ) + cos ( 2 η ) sin ( ϕ y - ϕ x ) cos δ ] .
S 1 - S 2 S 1 + S 2 = - cos ( 2 η ) sin δ .
tan γ = tan ( ϕ y - ϕ x ) cos δ ;             - π 2 < γ π 2
C = 1 1 + tan 2 δ sin 2 γ .
S 1 - S 2 S 1 + S 2 = - 1 - | r y r x | 2 1 + | r y r x | 2 cos ( 2 η ) sin δ ± 2 C | r y r x | 1 + | r y r x | 2 sin ( 2 η + γ ) .
( S 1 - S 2 S 1 + S 2 ) up - ( S 1 - S 2 S 1 + S 2 ) down = 4 C | r y r x | 1 + | r y r x | 2 sin ( 2 η + γ ) .

Metrics