Abstract

The principal refractive indices of yttrium aluminate crystal doping with 1-wt, % neodymium (Nd:YAP) have been measured by a minimum deviation method for the wavelengths 0.5398, 0.6328, and 1.0795 μm in the temperature range of 289–435 K. The thermal refractive index coefficients have been obtained at these wavelengths, and they are all positive and slightly decrease with increased wavelength. The constants of the single term Sellmeier equation are also given for the 273–420 K temperature range. These constants are in linear relationship with temperature in the 4 × 10−3 error range.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Weber, M. Bass, K. Andringa, R. R. Monchamp, E. Comperchio, “Czochralski Growth and Properties of YAlO3 Laser Crystals,” Appl. Phys. Lett. 15, 342–345 (1969).
    [CrossRef]
  2. G. A. Keig, L. G. DeShazer, “Laserverhalten von Yttrium Orthoaluminat bei Dotierung mit Seltenen Erden,” Laser Elektro-Opt. 4[3], 45–50 (1972).
  3. Y. Kuwano, “Refractive Indices of YAlO3:Nd,” J. Appl. Phys. 49, 4223–4224 (1978).
    [CrossRef]
  4. D. D. Young, K. C. Jungling, T. R. Williamson, E. R. Nichols, “Holographic Interferometry Measurement of the Thermal Refractive Index Coefficient and the Thermal Expansion Coefficient of Nd:YAG and Nd:YAlO3” IEEE J. Quantum Electron. QE-8, 720–721 (1972).
    [CrossRef]
  5. W. L. Bond, “Measurement of the Refractive Indices of Several Crystals,” J. Appl. Phys. 36, 1674–1677 (1965).
    [CrossRef]

1978 (1)

Y. Kuwano, “Refractive Indices of YAlO3:Nd,” J. Appl. Phys. 49, 4223–4224 (1978).
[CrossRef]

1972 (2)

D. D. Young, K. C. Jungling, T. R. Williamson, E. R. Nichols, “Holographic Interferometry Measurement of the Thermal Refractive Index Coefficient and the Thermal Expansion Coefficient of Nd:YAG and Nd:YAlO3” IEEE J. Quantum Electron. QE-8, 720–721 (1972).
[CrossRef]

G. A. Keig, L. G. DeShazer, “Laserverhalten von Yttrium Orthoaluminat bei Dotierung mit Seltenen Erden,” Laser Elektro-Opt. 4[3], 45–50 (1972).

1969 (1)

M. J. Weber, M. Bass, K. Andringa, R. R. Monchamp, E. Comperchio, “Czochralski Growth and Properties of YAlO3 Laser Crystals,” Appl. Phys. Lett. 15, 342–345 (1969).
[CrossRef]

1965 (1)

W. L. Bond, “Measurement of the Refractive Indices of Several Crystals,” J. Appl. Phys. 36, 1674–1677 (1965).
[CrossRef]

Andringa, K.

M. J. Weber, M. Bass, K. Andringa, R. R. Monchamp, E. Comperchio, “Czochralski Growth and Properties of YAlO3 Laser Crystals,” Appl. Phys. Lett. 15, 342–345 (1969).
[CrossRef]

Bass, M.

M. J. Weber, M. Bass, K. Andringa, R. R. Monchamp, E. Comperchio, “Czochralski Growth and Properties of YAlO3 Laser Crystals,” Appl. Phys. Lett. 15, 342–345 (1969).
[CrossRef]

Bond, W. L.

W. L. Bond, “Measurement of the Refractive Indices of Several Crystals,” J. Appl. Phys. 36, 1674–1677 (1965).
[CrossRef]

Comperchio, E.

M. J. Weber, M. Bass, K. Andringa, R. R. Monchamp, E. Comperchio, “Czochralski Growth and Properties of YAlO3 Laser Crystals,” Appl. Phys. Lett. 15, 342–345 (1969).
[CrossRef]

DeShazer, L. G.

G. A. Keig, L. G. DeShazer, “Laserverhalten von Yttrium Orthoaluminat bei Dotierung mit Seltenen Erden,” Laser Elektro-Opt. 4[3], 45–50 (1972).

Jungling, K. C.

D. D. Young, K. C. Jungling, T. R. Williamson, E. R. Nichols, “Holographic Interferometry Measurement of the Thermal Refractive Index Coefficient and the Thermal Expansion Coefficient of Nd:YAG and Nd:YAlO3” IEEE J. Quantum Electron. QE-8, 720–721 (1972).
[CrossRef]

Keig, G. A.

G. A. Keig, L. G. DeShazer, “Laserverhalten von Yttrium Orthoaluminat bei Dotierung mit Seltenen Erden,” Laser Elektro-Opt. 4[3], 45–50 (1972).

Kuwano, Y.

Y. Kuwano, “Refractive Indices of YAlO3:Nd,” J. Appl. Phys. 49, 4223–4224 (1978).
[CrossRef]

Monchamp, R. R.

M. J. Weber, M. Bass, K. Andringa, R. R. Monchamp, E. Comperchio, “Czochralski Growth and Properties of YAlO3 Laser Crystals,” Appl. Phys. Lett. 15, 342–345 (1969).
[CrossRef]

Nichols, E. R.

D. D. Young, K. C. Jungling, T. R. Williamson, E. R. Nichols, “Holographic Interferometry Measurement of the Thermal Refractive Index Coefficient and the Thermal Expansion Coefficient of Nd:YAG and Nd:YAlO3” IEEE J. Quantum Electron. QE-8, 720–721 (1972).
[CrossRef]

Weber, M. J.

M. J. Weber, M. Bass, K. Andringa, R. R. Monchamp, E. Comperchio, “Czochralski Growth and Properties of YAlO3 Laser Crystals,” Appl. Phys. Lett. 15, 342–345 (1969).
[CrossRef]

Williamson, T. R.

D. D. Young, K. C. Jungling, T. R. Williamson, E. R. Nichols, “Holographic Interferometry Measurement of the Thermal Refractive Index Coefficient and the Thermal Expansion Coefficient of Nd:YAG and Nd:YAlO3” IEEE J. Quantum Electron. QE-8, 720–721 (1972).
[CrossRef]

Young, D. D.

D. D. Young, K. C. Jungling, T. R. Williamson, E. R. Nichols, “Holographic Interferometry Measurement of the Thermal Refractive Index Coefficient and the Thermal Expansion Coefficient of Nd:YAG and Nd:YAlO3” IEEE J. Quantum Electron. QE-8, 720–721 (1972).
[CrossRef]

Appl. Phys. Lett. (1)

M. J. Weber, M. Bass, K. Andringa, R. R. Monchamp, E. Comperchio, “Czochralski Growth and Properties of YAlO3 Laser Crystals,” Appl. Phys. Lett. 15, 342–345 (1969).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. D. Young, K. C. Jungling, T. R. Williamson, E. R. Nichols, “Holographic Interferometry Measurement of the Thermal Refractive Index Coefficient and the Thermal Expansion Coefficient of Nd:YAG and Nd:YAlO3” IEEE J. Quantum Electron. QE-8, 720–721 (1972).
[CrossRef]

J. Appl. Phys. (2)

W. L. Bond, “Measurement of the Refractive Indices of Several Crystals,” J. Appl. Phys. 36, 1674–1677 (1965).
[CrossRef]

Y. Kuwano, “Refractive Indices of YAlO3:Nd,” J. Appl. Phys. 49, 4223–4224 (1978).
[CrossRef]

Laser Elektro-Opt. (1)

G. A. Keig, L. G. DeShazer, “Laserverhalten von Yttrium Orthoaluminat bei Dotierung mit Seltenen Erden,” Laser Elektro-Opt. 4[3], 45–50 (1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Measuring prism.

Fig. 2
Fig. 2

Relationship between refractive index na and temperature T.

Fig. 3
Fig. 3

Relationship between refractive index nb and temperature T.

Fig. 4
Fig. 4

Relationship between refractive index nc and temperature T.

Fig. 5
Fig. 5

Relationship between constant B and temperature T.

Fig. 6
Fig. 6

Relationship between constant C and temperature T.

Fig. 7
Fig. 7

Orientation error of the crystal axes.

Fig. 8
Fig. 8

Relationship between refractive indices na, nb, and nc and wavelength.

Tables (8)

Tables Icon

Table I Refractive Indices for 0.5398-μm Wavelength

Tables Icon

Table II Refractive Indices for 0.6328-μm Wavelength

Tables Icon

Table III Refractive Indices for 1.0795-μm Wavelength

Tables Icon

Table IV Values of Constants B and C at Different Temperatures

Tables Icon

Table V Refractive Indices for Different Wavelengths at 293 K

Tables Icon

Table VI Values of Constants B, C, D and E at 293 K

Tables Icon

Table VII Comparison of Measured and Published Refractive Indices

Tables Icon

Table VIII Comparison of Measured and Published Thermal Refractive Index Coefficients

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n i 2 ( λ ) = 1 + B i 1 - C i λ 2 ,             ( i = a , b , c ) ,
δ n 1 = n [ ( δ ξ tan ξ ) 2 + ( δ x tan x ) 2 ] 1 206265 .
Δ b ( 2 n a 2 n b - 3 δ n b ) 1 / 2 .
δ n 4 = d n d T Δ T .
δ n = ( 12.8 2 + 3 2 + 3.4 2 + 2 2 ) 1 / 2 × 10 - 5 = 1.37 × 10 - 4 ,
n i 2 ( λ ) = 1 + B i 1 - C i λ 2 + D i 1 + E i λ 2 ,             ( i = a , b , c ) .

Metrics