Abstract

Significant increases (×10) in both speed and gain of the beam fanning process were obtained via three different methods in SBN and BSKNN. These methods involve the creation of a dc electric field either (1) externally, (2) by the pyroelectric effect, or (3) by thermally cycling the crystal and the presence of laser radiation. The enhanced effects were observed for both ordinary and extraordinary polarized light.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Feinberg, “Asymmetric Self-Defocusing of an Optical Beam from the Photorefractive Effect,” J. Opt. Soc. Am. 72, 46–51 (1982).
    [CrossRef]
  2. J. Feinberg, D. Heiman, A. R. Tanguay, R. W. Hellwarth, “Photorefractive Effects and Light-Induced Charge Migration in Barium Titanate,” J. Appl. Phys. 51, 1297–1305 (1980).
    [CrossRef]
  3. M. D. Ewbank, “Mechanism for Photorefractive Phase Conjugation Using Incoherent Beams,” Opt. Lett. 13, 47–49 (1988); “Incoherent beams sharing photorefractive holograms,” in Digest of Topical Meeting on Photorefractive Materials, Effects and Devices (Optical Society of America, Washington, D.C., 1987), p. 179.
    [CrossRef] [PubMed]
  4. M. Cronin-Golomb, A. Yariv, “Optical Limiters Using Photorefractive Nonlinearities,” J. Appl. Phys. 57, 4906–4910 (1985).
    [CrossRef]
  5. J. Ford, Y. Fainman, S. Lee, “Time-Integrating Interferometry Using Photorefractive Fanout,” Opt. Lett. 13, 856–858 (1988).
    [CrossRef] [PubMed]
  6. J. Feinberg, “Self-Pumped, Continuous-Wave Phase Conjugator Using Internal Reflection,” Opt. Lett. 7, 486–488 (1982).
    [CrossRef] [PubMed]
  7. G. J. Salamo, M. J. Miller, W. W. Clark, G. L. Wood, E. J. Sharp, R. R. Neurgaonkar, “Double Phase Conjugation in Strontium Barium Niobate,” OSA 1988 Annual Meeting Technical Digest, FL5, in press.
  8. G. L. Wood, W. W. Clark, M. J. Miller, E. J. Sharp, G. J. Salamo, R. R. Neurgaonkar, “Broadband Photorefractive Properties and Self-Pumped Phase Conjugation in Ce-SBN:60,” IEEE J. Quantum Electron. QE-23, 2126–2135 (1987).
    [CrossRef]
  9. G. C. Valley, “Competition Between Forward- and Backward-Stimulated Photorefractive Scattering in BaTiO3,” J. Opt. Soc. Am. B 4, 14–19 (1987); Errata, J. Opt. Soc. Am. B 4, 934 (1987).
    [CrossRef]
  10. F. P. Strohkendl, J. M. C. Jonathan, R. W. Hellwarth, “Hole-Electron Competition in Photorefractive Gratings,” Opt. Lett. 11, 312–314 (1986).
    [CrossRef] [PubMed]
  11. N. V. Kukhtarev, “Kinetics of Hologram Recording and Erasure in Electrooptic Crystals,” Sov. Tech. Phys. Lett. 2, 438–440 (1976).
  12. G. C. Valley, M. B. Klein, “Optimal Properties of Photorefractive Materials for Optical Data Processing,” Opt. Engr. 22, 704–711 (1983).
  13. J. R. Oliver, R. R. Neurgaonkar, L. E. Cross, “A Thermodynamic Phenomenology for Ferroelectric Tungsten Bronze Sr0.6Ba0.4Nb2O6 (SBN:60),” J. Appl. Phys. 64, 37–47 (1988).
    [CrossRef]
  14. R. R. Neurgaonkar, W. K. Cory, J. R. Oliver, W. W. Clark, G. L. Wood, M. J. Miller, E. J. Sharp, “Growth and Ferroelectric Properties of Tungsten Bronze Ba2−xSrxK1−yNayNb5O15 (BSKNN) Single Crystals,” J. Cryst. Growth 84, 629–637 (1987).
    [CrossRef]

1988

1987

R. R. Neurgaonkar, W. K. Cory, J. R. Oliver, W. W. Clark, G. L. Wood, M. J. Miller, E. J. Sharp, “Growth and Ferroelectric Properties of Tungsten Bronze Ba2−xSrxK1−yNayNb5O15 (BSKNN) Single Crystals,” J. Cryst. Growth 84, 629–637 (1987).
[CrossRef]

G. L. Wood, W. W. Clark, M. J. Miller, E. J. Sharp, G. J. Salamo, R. R. Neurgaonkar, “Broadband Photorefractive Properties and Self-Pumped Phase Conjugation in Ce-SBN:60,” IEEE J. Quantum Electron. QE-23, 2126–2135 (1987).
[CrossRef]

G. C. Valley, “Competition Between Forward- and Backward-Stimulated Photorefractive Scattering in BaTiO3,” J. Opt. Soc. Am. B 4, 14–19 (1987); Errata, J. Opt. Soc. Am. B 4, 934 (1987).
[CrossRef]

1986

1985

M. Cronin-Golomb, A. Yariv, “Optical Limiters Using Photorefractive Nonlinearities,” J. Appl. Phys. 57, 4906–4910 (1985).
[CrossRef]

1983

G. C. Valley, M. B. Klein, “Optimal Properties of Photorefractive Materials for Optical Data Processing,” Opt. Engr. 22, 704–711 (1983).

1982

1980

J. Feinberg, D. Heiman, A. R. Tanguay, R. W. Hellwarth, “Photorefractive Effects and Light-Induced Charge Migration in Barium Titanate,” J. Appl. Phys. 51, 1297–1305 (1980).
[CrossRef]

1976

N. V. Kukhtarev, “Kinetics of Hologram Recording and Erasure in Electrooptic Crystals,” Sov. Tech. Phys. Lett. 2, 438–440 (1976).

Clark, W. W.

G. L. Wood, W. W. Clark, M. J. Miller, E. J. Sharp, G. J. Salamo, R. R. Neurgaonkar, “Broadband Photorefractive Properties and Self-Pumped Phase Conjugation in Ce-SBN:60,” IEEE J. Quantum Electron. QE-23, 2126–2135 (1987).
[CrossRef]

R. R. Neurgaonkar, W. K. Cory, J. R. Oliver, W. W. Clark, G. L. Wood, M. J. Miller, E. J. Sharp, “Growth and Ferroelectric Properties of Tungsten Bronze Ba2−xSrxK1−yNayNb5O15 (BSKNN) Single Crystals,” J. Cryst. Growth 84, 629–637 (1987).
[CrossRef]

G. J. Salamo, M. J. Miller, W. W. Clark, G. L. Wood, E. J. Sharp, R. R. Neurgaonkar, “Double Phase Conjugation in Strontium Barium Niobate,” OSA 1988 Annual Meeting Technical Digest, FL5, in press.

Cory, W. K.

R. R. Neurgaonkar, W. K. Cory, J. R. Oliver, W. W. Clark, G. L. Wood, M. J. Miller, E. J. Sharp, “Growth and Ferroelectric Properties of Tungsten Bronze Ba2−xSrxK1−yNayNb5O15 (BSKNN) Single Crystals,” J. Cryst. Growth 84, 629–637 (1987).
[CrossRef]

Cronin-Golomb, M.

M. Cronin-Golomb, A. Yariv, “Optical Limiters Using Photorefractive Nonlinearities,” J. Appl. Phys. 57, 4906–4910 (1985).
[CrossRef]

Cross, L. E.

J. R. Oliver, R. R. Neurgaonkar, L. E. Cross, “A Thermodynamic Phenomenology for Ferroelectric Tungsten Bronze Sr0.6Ba0.4Nb2O6 (SBN:60),” J. Appl. Phys. 64, 37–47 (1988).
[CrossRef]

Ewbank, M. D.

Fainman, Y.

Feinberg, J.

Ford, J.

Heiman, D.

J. Feinberg, D. Heiman, A. R. Tanguay, R. W. Hellwarth, “Photorefractive Effects and Light-Induced Charge Migration in Barium Titanate,” J. Appl. Phys. 51, 1297–1305 (1980).
[CrossRef]

Hellwarth, R. W.

F. P. Strohkendl, J. M. C. Jonathan, R. W. Hellwarth, “Hole-Electron Competition in Photorefractive Gratings,” Opt. Lett. 11, 312–314 (1986).
[CrossRef] [PubMed]

J. Feinberg, D. Heiman, A. R. Tanguay, R. W. Hellwarth, “Photorefractive Effects and Light-Induced Charge Migration in Barium Titanate,” J. Appl. Phys. 51, 1297–1305 (1980).
[CrossRef]

Jonathan, J. M. C.

Klein, M. B.

G. C. Valley, M. B. Klein, “Optimal Properties of Photorefractive Materials for Optical Data Processing,” Opt. Engr. 22, 704–711 (1983).

Kukhtarev, N. V.

N. V. Kukhtarev, “Kinetics of Hologram Recording and Erasure in Electrooptic Crystals,” Sov. Tech. Phys. Lett. 2, 438–440 (1976).

Lee, S.

Miller, M. J.

G. L. Wood, W. W. Clark, M. J. Miller, E. J. Sharp, G. J. Salamo, R. R. Neurgaonkar, “Broadband Photorefractive Properties and Self-Pumped Phase Conjugation in Ce-SBN:60,” IEEE J. Quantum Electron. QE-23, 2126–2135 (1987).
[CrossRef]

R. R. Neurgaonkar, W. K. Cory, J. R. Oliver, W. W. Clark, G. L. Wood, M. J. Miller, E. J. Sharp, “Growth and Ferroelectric Properties of Tungsten Bronze Ba2−xSrxK1−yNayNb5O15 (BSKNN) Single Crystals,” J. Cryst. Growth 84, 629–637 (1987).
[CrossRef]

G. J. Salamo, M. J. Miller, W. W. Clark, G. L. Wood, E. J. Sharp, R. R. Neurgaonkar, “Double Phase Conjugation in Strontium Barium Niobate,” OSA 1988 Annual Meeting Technical Digest, FL5, in press.

Neurgaonkar, R. R.

J. R. Oliver, R. R. Neurgaonkar, L. E. Cross, “A Thermodynamic Phenomenology for Ferroelectric Tungsten Bronze Sr0.6Ba0.4Nb2O6 (SBN:60),” J. Appl. Phys. 64, 37–47 (1988).
[CrossRef]

G. L. Wood, W. W. Clark, M. J. Miller, E. J. Sharp, G. J. Salamo, R. R. Neurgaonkar, “Broadband Photorefractive Properties and Self-Pumped Phase Conjugation in Ce-SBN:60,” IEEE J. Quantum Electron. QE-23, 2126–2135 (1987).
[CrossRef]

R. R. Neurgaonkar, W. K. Cory, J. R. Oliver, W. W. Clark, G. L. Wood, M. J. Miller, E. J. Sharp, “Growth and Ferroelectric Properties of Tungsten Bronze Ba2−xSrxK1−yNayNb5O15 (BSKNN) Single Crystals,” J. Cryst. Growth 84, 629–637 (1987).
[CrossRef]

G. J. Salamo, M. J. Miller, W. W. Clark, G. L. Wood, E. J. Sharp, R. R. Neurgaonkar, “Double Phase Conjugation in Strontium Barium Niobate,” OSA 1988 Annual Meeting Technical Digest, FL5, in press.

Oliver, J. R.

J. R. Oliver, R. R. Neurgaonkar, L. E. Cross, “A Thermodynamic Phenomenology for Ferroelectric Tungsten Bronze Sr0.6Ba0.4Nb2O6 (SBN:60),” J. Appl. Phys. 64, 37–47 (1988).
[CrossRef]

R. R. Neurgaonkar, W. K. Cory, J. R. Oliver, W. W. Clark, G. L. Wood, M. J. Miller, E. J. Sharp, “Growth and Ferroelectric Properties of Tungsten Bronze Ba2−xSrxK1−yNayNb5O15 (BSKNN) Single Crystals,” J. Cryst. Growth 84, 629–637 (1987).
[CrossRef]

Salamo, G. J.

G. L. Wood, W. W. Clark, M. J. Miller, E. J. Sharp, G. J. Salamo, R. R. Neurgaonkar, “Broadband Photorefractive Properties and Self-Pumped Phase Conjugation in Ce-SBN:60,” IEEE J. Quantum Electron. QE-23, 2126–2135 (1987).
[CrossRef]

G. J. Salamo, M. J. Miller, W. W. Clark, G. L. Wood, E. J. Sharp, R. R. Neurgaonkar, “Double Phase Conjugation in Strontium Barium Niobate,” OSA 1988 Annual Meeting Technical Digest, FL5, in press.

Sharp, E. J.

G. L. Wood, W. W. Clark, M. J. Miller, E. J. Sharp, G. J. Salamo, R. R. Neurgaonkar, “Broadband Photorefractive Properties and Self-Pumped Phase Conjugation in Ce-SBN:60,” IEEE J. Quantum Electron. QE-23, 2126–2135 (1987).
[CrossRef]

R. R. Neurgaonkar, W. K. Cory, J. R. Oliver, W. W. Clark, G. L. Wood, M. J. Miller, E. J. Sharp, “Growth and Ferroelectric Properties of Tungsten Bronze Ba2−xSrxK1−yNayNb5O15 (BSKNN) Single Crystals,” J. Cryst. Growth 84, 629–637 (1987).
[CrossRef]

G. J. Salamo, M. J. Miller, W. W. Clark, G. L. Wood, E. J. Sharp, R. R. Neurgaonkar, “Double Phase Conjugation in Strontium Barium Niobate,” OSA 1988 Annual Meeting Technical Digest, FL5, in press.

Strohkendl, F. P.

Tanguay, A. R.

J. Feinberg, D. Heiman, A. R. Tanguay, R. W. Hellwarth, “Photorefractive Effects and Light-Induced Charge Migration in Barium Titanate,” J. Appl. Phys. 51, 1297–1305 (1980).
[CrossRef]

Valley, G. C.

G. C. Valley, “Competition Between Forward- and Backward-Stimulated Photorefractive Scattering in BaTiO3,” J. Opt. Soc. Am. B 4, 14–19 (1987); Errata, J. Opt. Soc. Am. B 4, 934 (1987).
[CrossRef]

G. C. Valley, M. B. Klein, “Optimal Properties of Photorefractive Materials for Optical Data Processing,” Opt. Engr. 22, 704–711 (1983).

Wood, G. L.

G. L. Wood, W. W. Clark, M. J. Miller, E. J. Sharp, G. J. Salamo, R. R. Neurgaonkar, “Broadband Photorefractive Properties and Self-Pumped Phase Conjugation in Ce-SBN:60,” IEEE J. Quantum Electron. QE-23, 2126–2135 (1987).
[CrossRef]

R. R. Neurgaonkar, W. K. Cory, J. R. Oliver, W. W. Clark, G. L. Wood, M. J. Miller, E. J. Sharp, “Growth and Ferroelectric Properties of Tungsten Bronze Ba2−xSrxK1−yNayNb5O15 (BSKNN) Single Crystals,” J. Cryst. Growth 84, 629–637 (1987).
[CrossRef]

G. J. Salamo, M. J. Miller, W. W. Clark, G. L. Wood, E. J. Sharp, R. R. Neurgaonkar, “Double Phase Conjugation in Strontium Barium Niobate,” OSA 1988 Annual Meeting Technical Digest, FL5, in press.

Yariv, A.

M. Cronin-Golomb, A. Yariv, “Optical Limiters Using Photorefractive Nonlinearities,” J. Appl. Phys. 57, 4906–4910 (1985).
[CrossRef]

IEEE J. Quantum Electron.

G. L. Wood, W. W. Clark, M. J. Miller, E. J. Sharp, G. J. Salamo, R. R. Neurgaonkar, “Broadband Photorefractive Properties and Self-Pumped Phase Conjugation in Ce-SBN:60,” IEEE J. Quantum Electron. QE-23, 2126–2135 (1987).
[CrossRef]

J. Appl. Phys.

M. Cronin-Golomb, A. Yariv, “Optical Limiters Using Photorefractive Nonlinearities,” J. Appl. Phys. 57, 4906–4910 (1985).
[CrossRef]

J. Feinberg, D. Heiman, A. R. Tanguay, R. W. Hellwarth, “Photorefractive Effects and Light-Induced Charge Migration in Barium Titanate,” J. Appl. Phys. 51, 1297–1305 (1980).
[CrossRef]

J. R. Oliver, R. R. Neurgaonkar, L. E. Cross, “A Thermodynamic Phenomenology for Ferroelectric Tungsten Bronze Sr0.6Ba0.4Nb2O6 (SBN:60),” J. Appl. Phys. 64, 37–47 (1988).
[CrossRef]

J. Cryst. Growth

R. R. Neurgaonkar, W. K. Cory, J. R. Oliver, W. W. Clark, G. L. Wood, M. J. Miller, E. J. Sharp, “Growth and Ferroelectric Properties of Tungsten Bronze Ba2−xSrxK1−yNayNb5O15 (BSKNN) Single Crystals,” J. Cryst. Growth 84, 629–637 (1987).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

Opt. Engr.

G. C. Valley, M. B. Klein, “Optimal Properties of Photorefractive Materials for Optical Data Processing,” Opt. Engr. 22, 704–711 (1983).

Opt. Lett.

Sov. Tech. Phys. Lett.

N. V. Kukhtarev, “Kinetics of Hologram Recording and Erasure in Electrooptic Crystals,” Sov. Tech. Phys. Lett. 2, 438–440 (1976).

Other

G. J. Salamo, M. J. Miller, W. W. Clark, G. L. Wood, E. J. Sharp, R. R. Neurgaonkar, “Double Phase Conjugation in Strontium Barium Niobate,” OSA 1988 Annual Meeting Technical Digest, FL5, in press.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Beam fanning from a crystal of Ce-SBN:60 using ordinary polarized light and no applied field: (a) Two seconds after turn-on, (b) steady state, and 60 s after turn-on. The photographs were taken by replacing the aperture in Fig. 3 with a screen. The crystal c-axis pointed to the left.

Fig. 2
Fig. 2

Enhanced beam fan with ordinary light and a self-generated field after 2 s. The photograph was taken with the same exposure setting and crystal orientation as Fig. 1.

Fig. 3
Fig. 3

Experimental apparatus: P, polarization rotator; S, shutter; M, mirror; A, aperture; LASER, He–Cd or He–Ne.

Fig. 4
Fig. 4

Criteria for enhancement of steady state gain coefficient with applied electric field: E0, applied field; Eq, limiting space-charge field; and ED, diffusion field.

Fig. 5
Fig. 5

Theoretical plots of coupling gain vs applied field for different crossing angles in Ce-SBN:60, for normal incidence. The left y-axis is for extraordinary polarized light and the right y-axis is for ordinary polarized light. The parameters used for this calculation are for crystal 3 of Ref. 8.

Fig. 6
Fig. 6

Criteria for change in response time with applied electric field: τI, optical excitation time; τdi, dielectric relaxation time; τR, recombination time; τD, diffusion time; τE, drift time.

Fig. 7
Fig. 7

Beam fanning with extraordinary polarized light and externally applied electric fields. The y-axis represents the intensity transmitted into an apertured detector.

Fig. 8
Fig. 8

Beam fanning with ordinary polarized light and externally applied electric fields. Positive fields are in the same direction as the poling field. The y-axis represents the intensity transmitted into an apertured detector.

Fig. 9
Fig. 9

Self-generated fields via the pyroelectric method. At Tinitial the crystal is neutral and the compensating field, EC (←), balances the depolarizing field, EDP (→). As the temperature is raised/lowered the depolarizing field decreases/increases such that a net field is produced in the crystal at the final temperature.

Fig. 10
Fig. 10

Beam fanning with ordinary polarized light and self-generated electric fields via the pyroelectric method. The measurements were all made at 55°C.

Fig. 11
Fig. 11

Beam fanning with ordinary polarized light and self-generated electric fields via the thermal cycle method. The measurements were all made at an equilibrium temperature of 60°C.

Fig. 12
Fig. 12

Thermal cycle method of producing internal electric fields (the c-axis points down in this figure): (a) neutral crystal at Tinitial; (b) development of a photorefractive field (EPH, ↑) in the beam area and a net depolarizing field (EDP, ↓) throughout the crystal as the temperature is lowered with a preparation beam; (c) neutral area in volume traversed by the preparation beam surrounded by strong depolarizing field; (d) depolarizing field decreases as temperature is raised with preparation beam off; (e) at final temperature the depolarizing field is again balanced by the compensation field (EC), but the field of the trapped photorefractive charges remains.

Fig. 13
Fig. 13

Apparatus used to view crystal birefringence: PR, polarization rotator; S, shutter; M, mirror; BS, beam splitter; BX, beam expander; P1 and P2, polarizer and analyzer combination.

Fig. 14
Fig. 14

Birefringent fringes observed during thermal cycling in BSKNN (the c-axis runs from top to bottom): (a) neutral crystal at thermal equilibrium—vertical fringes denote different crystal thicknesses; (b) as the temperature is lowered—horizontal fringes denote temperature gradients; (c) thermal equilibrium at Tlow—the center spot marks the area of the preparation beam; (d) as the temperature is raised without light—area of prior preparation beam becomes more distinct; (e) thermal equilibrium at Tfinal—fringes suggesting field patterns created by trapped photorefractive charges are evident above and below the center spot—the thermal cycle is now complete and the crystal is in the prepared state.

Fig. 15
Fig. 15

Birefringent fringes after application of probe beam. Erasure of the dark central spot occurs as photorefractive charges begin to neutralize the field.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

γ = [ 2 π n 3 r eff / m λ 0 ] × E sc ( 90 ° ) ,
E sc ( 90 ° ) = m E q E D ( E q + E D ) + E 0 2 ( E q + E D ) 2 + E 0 2 .
m E q / ( 1 + E q / E D ) < E sc ( 90 ° ) < m E q .
ρ sc = m q N eff E D ( E q + E D ) + E 0 2 ( E q + E D ) 2 + E 0 2
τ = τ I ( 1 τ R + 1 τ D ) 2 + ( 1 τ E ) 2 ( τ I τ di 1 τ R + 1 τ D ) ( 1 τ R + 1 τ D ) + ( 1 τ E ) 2 ,
E 0 = [ P ( T f ) - P ( T i ) ] / rf 0 ,

Metrics