Abstract

The optical decay times associated with the eigenstates of an anisotropic cavity are measured. This leads to a simple differential method for isolating the linear (or circular) dichroism in either optical or atomic systems.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Z. Anderson, J. C. Frisch, C. S. Masser, “Mirror Reflectometer Based on Optical Cavity Decay Time,” Appl. Opt. 23, 1238–1245 (1984).
    [CrossRef] [PubMed]
  2. “Ultralow Loss Measurements for High Performance Optics,” Laser Focus/Electro-Opt.22–26 (Feb.1987).
  3. A. O. Keefe, A. G. Deacon, “Cavity Ring-Down Optical Spectrometer for Absorption Measurements Using Pulsed Laser Sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
    [CrossRef]
  4. A. Le Floch, Thesis, Rennes (1977) unpublished; A. Le Floch, R. Le Naour, G. Stephan, “Analysis of the Lamb-Dip Structure with Linear and Helicoidal Polarizations,” Phys. Rev. Lett. 39, 1611–1614(1977).
    [CrossRef]
  5. Note that the birefringence of cavity mirrors is not always negligible. However, a simple test consists in rotating a mirror in its plane to verify that no change occurs in the nature of the eigenstates which are fixed by the anisotropy.
  6. Y. Le Grand, A. LeFloch, “Measurement of Residual Reflectivities Using the two Eigenstates of a Passive Cavity,” Appl. Opt. 27, 4925–4930 (1988).
    [CrossRef]
  7. A. Kastler, “Transmission d’une Impulsion Lumineuse par un Interféromètre Fabry-Perot,” Nouv. Rev. Opt. 5, 133–139 (1974).
    [CrossRef]
  8. H. Boersch, G. Herziger, “Theoretical and Experimental Investigation of Regenerative Laser Amplifiers and their Applications,” IEEE J. Quantum Electron. QE-2, 549–552 (1966).
    [CrossRef]
  9. A. Le Floch, R. Le Naour, G. Stephan, P. Brun, “Frequency Stabilization and Tunability of Lasers; Use of Mobile Dips and Peaks,” Appl. Opt. 15, 2673–2677 (1976).
    [CrossRef]

1988 (2)

A. O. Keefe, A. G. Deacon, “Cavity Ring-Down Optical Spectrometer for Absorption Measurements Using Pulsed Laser Sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Y. Le Grand, A. LeFloch, “Measurement of Residual Reflectivities Using the two Eigenstates of a Passive Cavity,” Appl. Opt. 27, 4925–4930 (1988).
[CrossRef]

1987 (1)

“Ultralow Loss Measurements for High Performance Optics,” Laser Focus/Electro-Opt.22–26 (Feb.1987).

1984 (1)

1976 (1)

1974 (1)

A. Kastler, “Transmission d’une Impulsion Lumineuse par un Interféromètre Fabry-Perot,” Nouv. Rev. Opt. 5, 133–139 (1974).
[CrossRef]

1966 (1)

H. Boersch, G. Herziger, “Theoretical and Experimental Investigation of Regenerative Laser Amplifiers and their Applications,” IEEE J. Quantum Electron. QE-2, 549–552 (1966).
[CrossRef]

Anderson, D. Z.

Boersch, H.

H. Boersch, G. Herziger, “Theoretical and Experimental Investigation of Regenerative Laser Amplifiers and their Applications,” IEEE J. Quantum Electron. QE-2, 549–552 (1966).
[CrossRef]

Brun, P.

Deacon, A. G.

A. O. Keefe, A. G. Deacon, “Cavity Ring-Down Optical Spectrometer for Absorption Measurements Using Pulsed Laser Sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Frisch, J. C.

Herziger, G.

H. Boersch, G. Herziger, “Theoretical and Experimental Investigation of Regenerative Laser Amplifiers and their Applications,” IEEE J. Quantum Electron. QE-2, 549–552 (1966).
[CrossRef]

Kastler, A.

A. Kastler, “Transmission d’une Impulsion Lumineuse par un Interféromètre Fabry-Perot,” Nouv. Rev. Opt. 5, 133–139 (1974).
[CrossRef]

Keefe, A. O.

A. O. Keefe, A. G. Deacon, “Cavity Ring-Down Optical Spectrometer for Absorption Measurements Using Pulsed Laser Sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Le Floch, A.

A. Le Floch, R. Le Naour, G. Stephan, P. Brun, “Frequency Stabilization and Tunability of Lasers; Use of Mobile Dips and Peaks,” Appl. Opt. 15, 2673–2677 (1976).
[CrossRef]

A. Le Floch, Thesis, Rennes (1977) unpublished; A. Le Floch, R. Le Naour, G. Stephan, “Analysis of the Lamb-Dip Structure with Linear and Helicoidal Polarizations,” Phys. Rev. Lett. 39, 1611–1614(1977).
[CrossRef]

Le Grand, Y.

Le Naour, R.

LeFloch, A.

Masser, C. S.

Stephan, G.

Appl. Opt. (3)

IEEE J. Quantum Electron. (1)

H. Boersch, G. Herziger, “Theoretical and Experimental Investigation of Regenerative Laser Amplifiers and their Applications,” IEEE J. Quantum Electron. QE-2, 549–552 (1966).
[CrossRef]

Laser Focus/Electro-Opt. (1)

“Ultralow Loss Measurements for High Performance Optics,” Laser Focus/Electro-Opt.22–26 (Feb.1987).

Nouv. Rev. Opt. (1)

A. Kastler, “Transmission d’une Impulsion Lumineuse par un Interféromètre Fabry-Perot,” Nouv. Rev. Opt. 5, 133–139 (1974).
[CrossRef]

Rev. Sci. Instrum. (1)

A. O. Keefe, A. G. Deacon, “Cavity Ring-Down Optical Spectrometer for Absorption Measurements Using Pulsed Laser Sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Other (2)

A. Le Floch, Thesis, Rennes (1977) unpublished; A. Le Floch, R. Le Naour, G. Stephan, “Analysis of the Lamb-Dip Structure with Linear and Helicoidal Polarizations,” Phys. Rev. Lett. 39, 1611–1614(1977).
[CrossRef]

Note that the birefringence of cavity mirrors is not always negligible. However, a simple test consists in rotating a mirror in its plane to verify that no change occurs in the nature of the eigenstates which are fixed by the anisotropy.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Top: schematic experimental setup for measurement of the residual reflectivity of an AR coated quarterwave plate: P1, input polarizer; M1, input mirror; λ/4, quarterwave plate; M2, output mirror; P2, output polarizer; D, detector. Bottom: the eigenstates are along the fast and slow axes of the plate. The plate is slightly tilted so as to be resonant for the eigenstate noted r and antiresonant for the perpendicular one noted a. E0, input polarization. (b) The two exponential decays associated with the two r and a eigenstates.

Fig. 2
Fig. 2

(a) Top: schematic experimental setup for measurement of the linear dichroism in Ne20 submitted to a transverse magnetic field: P1, input polarizer at 45° from the magnetic field B; M1, input mirror; M2, output mirror; P2, output polarizer; D, detector. Bottom: the Zeeman diagram of the 633-nm Ne20 line in a transverse magnetic field is such that Δνz ≃ 1.82 MHz/g. (The Lande factors of the upper level noted 3s2 and of the lower level noted 2p4 are 1.295 and 1.301, respectively). (b) The two exponential decays associated with the two π and σ eigenstates.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

T r - T a 4 R p .
I ( t ) = I 0 exp ( - t / τ ) ,
L d / c τ ,
L r = ( 1 - R T r ) d / c τ r ,
L a = ( 1 - R T a ) d / c τ a ,
R p d 4 c [ 1 τ a - 1 τ r ] .
L π ( ν ) = [ 1 - R T W G π ( ν ) ] d / c τ π ( ν ) ,
L σ ( ν ) = [ 1 - R T W G σ ( ν ) ] d / c τ σ ( ν ) ,
G π ( ν ) - G σ ( ν ) d c [ 1 τ σ ( ν ) - 1 τ π ( ν ) ] .

Metrics