## Abstract

It is shown how demodulation of rapidly modulated light beams can be achieved within a single charge-coupled device (CCD). Two interlaced image planes are created by optically masking every second CCD row and transferring the charges back and forth between the two image planes in synchrony with the modulation. The method has been successfully tested for modulation frequencies of 50 and 100 kHz, using integration times up to 1 s. No significant accumulated charge transfer losses are seen for integration times as long as 10^{5} modulation cycles (1 s). This demonstrates the feasibility of a CCD polarimeter using piezoelastic modulation of the state of polarization.

© 1990 Optical Society of America

Full Article |

PDF Article
### Equations (11)

Equations on this page are rendered with MathJax. Learn more.

(1)
$${I}_{c}(t)=[1+\text{sin}\varphi (t)]/2$$
(2)
$${I}_{l}(t)=[1+\text{cos}\varphi (t)]/2$$
(3)
$$\varphi (t)=A\hspace{0.17em}\text{sin}({\mathrm{\Omega}}_{0}t),$$
(4)
$${I}_{c}(t)=\xbd+{J}_{1}(A)\hspace{0.17em}\text{sin}({\mathrm{\Omega}}_{0}t)+{J}_{3}(A)\hspace{0.17em}\text{sin}(3{\mathrm{\Omega}}_{0}t)+\dots ,$$
(5)
$${I}_{t}(t)=[1+{J}_{0}(A)]/2+{J}_{2}(A)\hspace{0.17em}\text{sin}(2{\mathrm{\Omega}}_{0}t)+\dots .$$
(6)
$$P=\frac{{I}^{+}-{I}^{-}}{{I}^{+}+{I}^{-}}$$
(7)
$$D(\mathrm{\Omega}t)=\{\begin{array}{lll}\hfill 1& \text{for}\hspace{0.17em}2m\pi \hfill & <\mathrm{\Omega}t<(2m+1)\pi ,\hfill \\ -1\hfill & \text{for}\hspace{0.17em}(2m+1)\pi \hfill & <\mathrm{\Omega}t<(2m+2)\pi .\hfill \end{array}$$
(8)
$$F(\omega )~\sum _{k}\text{sinc}[(k\mathrm{\Omega}-\omega )T],\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}k=1,3,5,\dots ,$$
(9)
$$P(i,j)=\frac{{I}^{+}(i,j)-{I}^{-}(i,j)}{{I}^{+}(i,j)+{I}^{-}(i,j)},$$
(10)
$$P(\alpha )=\frac{4}{\pi}[{J}_{1}(A)\hspace{0.17em}\text{sin}(\alpha -{\alpha}_{0})-\frac{1}{3}{J}_{3}(A)\hspace{0.17em}\text{sin}3(\alpha -{\alpha}_{0})+\dots ],$$
(11)
$$P(\alpha )=\frac{4}{\pi}[{J}_{2}(A)\hspace{0.17em}\text{sin}(\alpha -{\alpha}_{0})+\frac{1}{3}{J}_{6}(A)\hspace{0.17em}\text{sin}3(\alpha -{\alpha}_{0})+\dots ]/[1-{J}_{0}(A)].$$