Abstract

Efficient and compact space invariant fanout holographic optical elements have been fabricated by combining the flexibility in design of computer-generated holograms with the versatility of conventional interferometric holography in dichromated gelatin. Effects of K-ratio variation and the phase distortion in the reconstruction fidelity are discussed. In addition, various preprocessing and postprocessing techniques have been employed to increase the optical damage threshold of these components to well over 100 W cm−2.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Streibl, J. Jahns, “Techniques for Array Illumination,” in Technical Digest, Topical Meeting on Optical Computing (Optical Society of America, Washington DC, 1989).
  2. H. Dammann, K. Gortler, “High-Efficiency In-Line Imaging by Means of Multiple Phase Holograms,” Opt. Commun. 3, 312–315 (1971).
    [CrossRef]
  3. J. Turunen, A. Vasara, J. Westerhom, G. Jin, A. Salin, “Optimization and Fabrication of Grating Beamsplitters,” J. Phys. D 21, S102–S105 (1988).
    [CrossRef]
  4. M. R. Taghizadeh, J. I. B. Wilson, J. Turunen, A. Vasara, J. Westerholm, Appl. Phys. Lett. 54, 1492–1494 (1989).
    [CrossRef]
  5. J. Fagerholm, J. Turunen, A. Vasara, J. Westerholm, “Periodic Fourier-Transform Holograms for Optical Computing,” Proc. Soc. Photo-Opt. Instrum. Eng. 1136, 253–260 (1989).
  6. B. J. Chang, C. D. Leonard, “Dichromated Gelatin for the Fabrication of Holographic Optical Elements,” Appl. Opt. 18, 2407–2417 (1979).
    [CrossRef] [PubMed]
  7. B. Robertson, M. R. Taghizadeh, J. Turunen, A. Vasara, “Construction of Space-Invariant Fan-Out Holograms by Copying Dammann Grating onto Dichromated Gelatin,” in Optical Interconnects, Proc. IEE 1988/121 (London, 1988), paper 8.
  8. H. O. Bartelt, S. K. Case, “High-Efficiency Hybrid Computer-Generated Holograms,” Appl. Opt. 21, 2886–2890 (1982).
    [CrossRef] [PubMed]
  9. L. Wang et al., “Interference Filters as Nonlinear Decision-Making Elements for Three-Spot Pattern Recognition and Associative Memories,” Appl. Opt. 27, 1715–1720 (1988).
    [CrossRef] [PubMed]
  10. M. R. Taghizadeh, I. R. Redmond, A. C. Walker, F. A. P. Tooley, S. D. Smith, W. Taylor, “Holographic Components for Digital Optical Computing Applications,” Proc. Soc. Photo-Opt. Instrum. Eng. 883, 245–253 (1988).
  11. G. Groh, “Multiple Imaging by Means of Point Holograms,” Appl. Opt. 7, 1643–1644 (1968).
    [CrossRef] [PubMed]
  12. Y.-Z. Liang, D. Zhao, H.-K. Liu, “Multifocus Dichromated Gelatin Hololens,” Appl. Opt. 22, 3451–3456 (1983).
    [CrossRef] [PubMed]
  13. H.-K. Liu, J. G. Duthie, “Real-Time Screen-Aided Multiple-Image Optical Holographic Matched-Filter Correlator,” Appl. Opt. 21, 3278–3286 (1982).
    [CrossRef] [PubMed]
  14. I. R. Redmond, “Holographic Optical Elements in Dichromated Gelatin,” Ph.D Thesis, Physics Department, Heriot-Watt U., U.K. (1989) and references therein.
  15. H. D. Tholl, F. Bottger, C. G. Stojanoff, “Evaluation of a Technique for the Design and Manufacturing of an Off-Axis Holographic Lens in Dichromated Gelatin,” J. Phys. D 21, S99–S103 (1987).
    [CrossRef]
  16. M. R. Taghizadeh, I. R. Redmond, B. Robertson, A. C. Walker, S. D. Smith, “High-Efficiency Holographic Optical Elements for All-Optical Digital Computing,” Proc. Soc. Photo-Opt. Instrum. Eng. 1136, 261–268 (1989).
  17. A. C. Walker et al., “Optically Bistable Thin-Film Interference Devices and Holographic Techniques for Experiments in Digital Optics,” Opt. Eng. 27, 38–44 (1988).
    [CrossRef]
  18. I. Janossy, M. R. Taghizadeh, J. G. H. Mathew, S. D. Smith, “Thermally Induced Optical Bistability in Thin Film Devices,” IEEE J. Quantum Electron. QE-21, 1447–1452 (1985).
    [CrossRef]
  19. E. Abraham, J. M. Malley, “Some Calculations of Temperature Profiles in Thin Films with Laser Heating,” Appl. Phys. A 42, 279–285 (1987).
    [CrossRef]

1989 (3)

M. R. Taghizadeh, J. I. B. Wilson, J. Turunen, A. Vasara, J. Westerholm, Appl. Phys. Lett. 54, 1492–1494 (1989).
[CrossRef]

J. Fagerholm, J. Turunen, A. Vasara, J. Westerholm, “Periodic Fourier-Transform Holograms for Optical Computing,” Proc. Soc. Photo-Opt. Instrum. Eng. 1136, 253–260 (1989).

M. R. Taghizadeh, I. R. Redmond, B. Robertson, A. C. Walker, S. D. Smith, “High-Efficiency Holographic Optical Elements for All-Optical Digital Computing,” Proc. Soc. Photo-Opt. Instrum. Eng. 1136, 261–268 (1989).

1988 (4)

A. C. Walker et al., “Optically Bistable Thin-Film Interference Devices and Holographic Techniques for Experiments in Digital Optics,” Opt. Eng. 27, 38–44 (1988).
[CrossRef]

J. Turunen, A. Vasara, J. Westerhom, G. Jin, A. Salin, “Optimization and Fabrication of Grating Beamsplitters,” J. Phys. D 21, S102–S105 (1988).
[CrossRef]

L. Wang et al., “Interference Filters as Nonlinear Decision-Making Elements for Three-Spot Pattern Recognition and Associative Memories,” Appl. Opt. 27, 1715–1720 (1988).
[CrossRef] [PubMed]

M. R. Taghizadeh, I. R. Redmond, A. C. Walker, F. A. P. Tooley, S. D. Smith, W. Taylor, “Holographic Components for Digital Optical Computing Applications,” Proc. Soc. Photo-Opt. Instrum. Eng. 883, 245–253 (1988).

1987 (2)

H. D. Tholl, F. Bottger, C. G. Stojanoff, “Evaluation of a Technique for the Design and Manufacturing of an Off-Axis Holographic Lens in Dichromated Gelatin,” J. Phys. D 21, S99–S103 (1987).
[CrossRef]

E. Abraham, J. M. Malley, “Some Calculations of Temperature Profiles in Thin Films with Laser Heating,” Appl. Phys. A 42, 279–285 (1987).
[CrossRef]

1985 (1)

I. Janossy, M. R. Taghizadeh, J. G. H. Mathew, S. D. Smith, “Thermally Induced Optical Bistability in Thin Film Devices,” IEEE J. Quantum Electron. QE-21, 1447–1452 (1985).
[CrossRef]

1983 (1)

1982 (2)

1979 (1)

1971 (1)

H. Dammann, K. Gortler, “High-Efficiency In-Line Imaging by Means of Multiple Phase Holograms,” Opt. Commun. 3, 312–315 (1971).
[CrossRef]

1968 (1)

Abraham, E.

E. Abraham, J. M. Malley, “Some Calculations of Temperature Profiles in Thin Films with Laser Heating,” Appl. Phys. A 42, 279–285 (1987).
[CrossRef]

Bartelt, H. O.

Bottger, F.

H. D. Tholl, F. Bottger, C. G. Stojanoff, “Evaluation of a Technique for the Design and Manufacturing of an Off-Axis Holographic Lens in Dichromated Gelatin,” J. Phys. D 21, S99–S103 (1987).
[CrossRef]

Case, S. K.

Chang, B. J.

Dammann, H.

H. Dammann, K. Gortler, “High-Efficiency In-Line Imaging by Means of Multiple Phase Holograms,” Opt. Commun. 3, 312–315 (1971).
[CrossRef]

Duthie, J. G.

Fagerholm, J.

J. Fagerholm, J. Turunen, A. Vasara, J. Westerholm, “Periodic Fourier-Transform Holograms for Optical Computing,” Proc. Soc. Photo-Opt. Instrum. Eng. 1136, 253–260 (1989).

Gortler, K.

H. Dammann, K. Gortler, “High-Efficiency In-Line Imaging by Means of Multiple Phase Holograms,” Opt. Commun. 3, 312–315 (1971).
[CrossRef]

Groh, G.

Jahns, J.

N. Streibl, J. Jahns, “Techniques for Array Illumination,” in Technical Digest, Topical Meeting on Optical Computing (Optical Society of America, Washington DC, 1989).

Janossy, I.

I. Janossy, M. R. Taghizadeh, J. G. H. Mathew, S. D. Smith, “Thermally Induced Optical Bistability in Thin Film Devices,” IEEE J. Quantum Electron. QE-21, 1447–1452 (1985).
[CrossRef]

Jin, G.

J. Turunen, A. Vasara, J. Westerhom, G. Jin, A. Salin, “Optimization and Fabrication of Grating Beamsplitters,” J. Phys. D 21, S102–S105 (1988).
[CrossRef]

Leonard, C. D.

Liang, Y.-Z.

Liu, H.-K.

Malley, J. M.

E. Abraham, J. M. Malley, “Some Calculations of Temperature Profiles in Thin Films with Laser Heating,” Appl. Phys. A 42, 279–285 (1987).
[CrossRef]

Mathew, J. G. H.

I. Janossy, M. R. Taghizadeh, J. G. H. Mathew, S. D. Smith, “Thermally Induced Optical Bistability in Thin Film Devices,” IEEE J. Quantum Electron. QE-21, 1447–1452 (1985).
[CrossRef]

Redmond, I. R.

M. R. Taghizadeh, I. R. Redmond, B. Robertson, A. C. Walker, S. D. Smith, “High-Efficiency Holographic Optical Elements for All-Optical Digital Computing,” Proc. Soc. Photo-Opt. Instrum. Eng. 1136, 261–268 (1989).

M. R. Taghizadeh, I. R. Redmond, A. C. Walker, F. A. P. Tooley, S. D. Smith, W. Taylor, “Holographic Components for Digital Optical Computing Applications,” Proc. Soc. Photo-Opt. Instrum. Eng. 883, 245–253 (1988).

I. R. Redmond, “Holographic Optical Elements in Dichromated Gelatin,” Ph.D Thesis, Physics Department, Heriot-Watt U., U.K. (1989) and references therein.

Robertson, B.

M. R. Taghizadeh, I. R. Redmond, B. Robertson, A. C. Walker, S. D. Smith, “High-Efficiency Holographic Optical Elements for All-Optical Digital Computing,” Proc. Soc. Photo-Opt. Instrum. Eng. 1136, 261–268 (1989).

B. Robertson, M. R. Taghizadeh, J. Turunen, A. Vasara, “Construction of Space-Invariant Fan-Out Holograms by Copying Dammann Grating onto Dichromated Gelatin,” in Optical Interconnects, Proc. IEE 1988/121 (London, 1988), paper 8.

Salin, A.

J. Turunen, A. Vasara, J. Westerhom, G. Jin, A. Salin, “Optimization and Fabrication of Grating Beamsplitters,” J. Phys. D 21, S102–S105 (1988).
[CrossRef]

Smith, S. D.

M. R. Taghizadeh, I. R. Redmond, B. Robertson, A. C. Walker, S. D. Smith, “High-Efficiency Holographic Optical Elements for All-Optical Digital Computing,” Proc. Soc. Photo-Opt. Instrum. Eng. 1136, 261–268 (1989).

M. R. Taghizadeh, I. R. Redmond, A. C. Walker, F. A. P. Tooley, S. D. Smith, W. Taylor, “Holographic Components for Digital Optical Computing Applications,” Proc. Soc. Photo-Opt. Instrum. Eng. 883, 245–253 (1988).

I. Janossy, M. R. Taghizadeh, J. G. H. Mathew, S. D. Smith, “Thermally Induced Optical Bistability in Thin Film Devices,” IEEE J. Quantum Electron. QE-21, 1447–1452 (1985).
[CrossRef]

Stojanoff, C. G.

H. D. Tholl, F. Bottger, C. G. Stojanoff, “Evaluation of a Technique for the Design and Manufacturing of an Off-Axis Holographic Lens in Dichromated Gelatin,” J. Phys. D 21, S99–S103 (1987).
[CrossRef]

Streibl, N.

N. Streibl, J. Jahns, “Techniques for Array Illumination,” in Technical Digest, Topical Meeting on Optical Computing (Optical Society of America, Washington DC, 1989).

Taghizadeh, M. R.

M. R. Taghizadeh, J. I. B. Wilson, J. Turunen, A. Vasara, J. Westerholm, Appl. Phys. Lett. 54, 1492–1494 (1989).
[CrossRef]

M. R. Taghizadeh, I. R. Redmond, B. Robertson, A. C. Walker, S. D. Smith, “High-Efficiency Holographic Optical Elements for All-Optical Digital Computing,” Proc. Soc. Photo-Opt. Instrum. Eng. 1136, 261–268 (1989).

M. R. Taghizadeh, I. R. Redmond, A. C. Walker, F. A. P. Tooley, S. D. Smith, W. Taylor, “Holographic Components for Digital Optical Computing Applications,” Proc. Soc. Photo-Opt. Instrum. Eng. 883, 245–253 (1988).

I. Janossy, M. R. Taghizadeh, J. G. H. Mathew, S. D. Smith, “Thermally Induced Optical Bistability in Thin Film Devices,” IEEE J. Quantum Electron. QE-21, 1447–1452 (1985).
[CrossRef]

B. Robertson, M. R. Taghizadeh, J. Turunen, A. Vasara, “Construction of Space-Invariant Fan-Out Holograms by Copying Dammann Grating onto Dichromated Gelatin,” in Optical Interconnects, Proc. IEE 1988/121 (London, 1988), paper 8.

Taylor, W.

M. R. Taghizadeh, I. R. Redmond, A. C. Walker, F. A. P. Tooley, S. D. Smith, W. Taylor, “Holographic Components for Digital Optical Computing Applications,” Proc. Soc. Photo-Opt. Instrum. Eng. 883, 245–253 (1988).

Tholl, H. D.

H. D. Tholl, F. Bottger, C. G. Stojanoff, “Evaluation of a Technique for the Design and Manufacturing of an Off-Axis Holographic Lens in Dichromated Gelatin,” J. Phys. D 21, S99–S103 (1987).
[CrossRef]

Tooley, F. A. P.

M. R. Taghizadeh, I. R. Redmond, A. C. Walker, F. A. P. Tooley, S. D. Smith, W. Taylor, “Holographic Components for Digital Optical Computing Applications,” Proc. Soc. Photo-Opt. Instrum. Eng. 883, 245–253 (1988).

Turunen, J.

M. R. Taghizadeh, J. I. B. Wilson, J. Turunen, A. Vasara, J. Westerholm, Appl. Phys. Lett. 54, 1492–1494 (1989).
[CrossRef]

J. Fagerholm, J. Turunen, A. Vasara, J. Westerholm, “Periodic Fourier-Transform Holograms for Optical Computing,” Proc. Soc. Photo-Opt. Instrum. Eng. 1136, 253–260 (1989).

J. Turunen, A. Vasara, J. Westerhom, G. Jin, A. Salin, “Optimization and Fabrication of Grating Beamsplitters,” J. Phys. D 21, S102–S105 (1988).
[CrossRef]

B. Robertson, M. R. Taghizadeh, J. Turunen, A. Vasara, “Construction of Space-Invariant Fan-Out Holograms by Copying Dammann Grating onto Dichromated Gelatin,” in Optical Interconnects, Proc. IEE 1988/121 (London, 1988), paper 8.

Vasara, A.

J. Fagerholm, J. Turunen, A. Vasara, J. Westerholm, “Periodic Fourier-Transform Holograms for Optical Computing,” Proc. Soc. Photo-Opt. Instrum. Eng. 1136, 253–260 (1989).

M. R. Taghizadeh, J. I. B. Wilson, J. Turunen, A. Vasara, J. Westerholm, Appl. Phys. Lett. 54, 1492–1494 (1989).
[CrossRef]

J. Turunen, A. Vasara, J. Westerhom, G. Jin, A. Salin, “Optimization and Fabrication of Grating Beamsplitters,” J. Phys. D 21, S102–S105 (1988).
[CrossRef]

B. Robertson, M. R. Taghizadeh, J. Turunen, A. Vasara, “Construction of Space-Invariant Fan-Out Holograms by Copying Dammann Grating onto Dichromated Gelatin,” in Optical Interconnects, Proc. IEE 1988/121 (London, 1988), paper 8.

Walker, A. C.

M. R. Taghizadeh, I. R. Redmond, B. Robertson, A. C. Walker, S. D. Smith, “High-Efficiency Holographic Optical Elements for All-Optical Digital Computing,” Proc. Soc. Photo-Opt. Instrum. Eng. 1136, 261–268 (1989).

A. C. Walker et al., “Optically Bistable Thin-Film Interference Devices and Holographic Techniques for Experiments in Digital Optics,” Opt. Eng. 27, 38–44 (1988).
[CrossRef]

M. R. Taghizadeh, I. R. Redmond, A. C. Walker, F. A. P. Tooley, S. D. Smith, W. Taylor, “Holographic Components for Digital Optical Computing Applications,” Proc. Soc. Photo-Opt. Instrum. Eng. 883, 245–253 (1988).

Wang, L.

Westerholm, J.

M. R. Taghizadeh, J. I. B. Wilson, J. Turunen, A. Vasara, J. Westerholm, Appl. Phys. Lett. 54, 1492–1494 (1989).
[CrossRef]

J. Fagerholm, J. Turunen, A. Vasara, J. Westerholm, “Periodic Fourier-Transform Holograms for Optical Computing,” Proc. Soc. Photo-Opt. Instrum. Eng. 1136, 253–260 (1989).

Westerhom, J.

J. Turunen, A. Vasara, J. Westerhom, G. Jin, A. Salin, “Optimization and Fabrication of Grating Beamsplitters,” J. Phys. D 21, S102–S105 (1988).
[CrossRef]

Wilson, J. I. B.

M. R. Taghizadeh, J. I. B. Wilson, J. Turunen, A. Vasara, J. Westerholm, Appl. Phys. Lett. 54, 1492–1494 (1989).
[CrossRef]

Zhao, D.

Appl. Opt. (6)

Appl. Phys. A (1)

E. Abraham, J. M. Malley, “Some Calculations of Temperature Profiles in Thin Films with Laser Heating,” Appl. Phys. A 42, 279–285 (1987).
[CrossRef]

Appl. Phys. Lett. (1)

M. R. Taghizadeh, J. I. B. Wilson, J. Turunen, A. Vasara, J. Westerholm, Appl. Phys. Lett. 54, 1492–1494 (1989).
[CrossRef]

IEEE J. Quantum Electron. (1)

I. Janossy, M. R. Taghizadeh, J. G. H. Mathew, S. D. Smith, “Thermally Induced Optical Bistability in Thin Film Devices,” IEEE J. Quantum Electron. QE-21, 1447–1452 (1985).
[CrossRef]

J. Phys. D (2)

H. D. Tholl, F. Bottger, C. G. Stojanoff, “Evaluation of a Technique for the Design and Manufacturing of an Off-Axis Holographic Lens in Dichromated Gelatin,” J. Phys. D 21, S99–S103 (1987).
[CrossRef]

J. Turunen, A. Vasara, J. Westerhom, G. Jin, A. Salin, “Optimization and Fabrication of Grating Beamsplitters,” J. Phys. D 21, S102–S105 (1988).
[CrossRef]

Opt. Commun. (1)

H. Dammann, K. Gortler, “High-Efficiency In-Line Imaging by Means of Multiple Phase Holograms,” Opt. Commun. 3, 312–315 (1971).
[CrossRef]

Opt. Eng. (1)

A. C. Walker et al., “Optically Bistable Thin-Film Interference Devices and Holographic Techniques for Experiments in Digital Optics,” Opt. Eng. 27, 38–44 (1988).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (3)

M. R. Taghizadeh, I. R. Redmond, B. Robertson, A. C. Walker, S. D. Smith, “High-Efficiency Holographic Optical Elements for All-Optical Digital Computing,” Proc. Soc. Photo-Opt. Instrum. Eng. 1136, 261–268 (1989).

J. Fagerholm, J. Turunen, A. Vasara, J. Westerholm, “Periodic Fourier-Transform Holograms for Optical Computing,” Proc. Soc. Photo-Opt. Instrum. Eng. 1136, 253–260 (1989).

M. R. Taghizadeh, I. R. Redmond, A. C. Walker, F. A. P. Tooley, S. D. Smith, W. Taylor, “Holographic Components for Digital Optical Computing Applications,” Proc. Soc. Photo-Opt. Instrum. Eng. 883, 245–253 (1988).

Other (3)

B. Robertson, M. R. Taghizadeh, J. Turunen, A. Vasara, “Construction of Space-Invariant Fan-Out Holograms by Copying Dammann Grating onto Dichromated Gelatin,” in Optical Interconnects, Proc. IEE 1988/121 (London, 1988), paper 8.

N. Streibl, J. Jahns, “Techniques for Array Illumination,” in Technical Digest, Topical Meeting on Optical Computing (Optical Society of America, Washington DC, 1989).

I. R. Redmond, “Holographic Optical Elements in Dichromated Gelatin,” Ph.D Thesis, Physics Department, Heriot-Watt U., U.K. (1989) and references therein.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup for copying a Dammann grating onto DCG. SF = spatial filter; A = aperture; CL = collimating lens; D = Dammann grating; L = positive lens; H = volume hologram plate; NDF = neutral density filter.

Fig. 2
Fig. 2

Operation of a holographic copy in replay.

Fig. 3
Fig. 3

Detailed diagram of the setup used to generate the object beam.

Fig. 4
Fig. 4

(a)Array generated by DCG copy; (b) array generated by a copy of a optimized binary phase grating.

Fig. 5
Fig. 5

Structure of a sealed DCG hologram.

Fig. 6
Fig. 6

Variation of diffraction efficiency with continuous heating at 60°C (+, no postprocessing; ■, postprocessed grating).

Fig. 7
Fig. 7

Model used in laser-induced heating calculations.

Fig. 8
Fig. 8

Change in diffraction efficiency caused by direct laser-induced heating (+, no postprocessing; ■, postprocessed grating).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

f H = f 1 2 f 2 2 ( z 2 - f 2 ) [ ( z 2 - f 2 ) ( f 1 - z 1 ) + f 1 2 ] ,
ϕ H = ϕ D f 1 f 2 f 1 2 + ( z 2 - f 2 ) ( f 1 - z 1 ) ,
d H = f 2 ( z 2 - f 2 ) d D .
α M M d H / f H
K = average reference beam intensity average object beam intensity .
T f ( x ) = α l P 0 2 π w K s I 0 ( x 2 / w 2 ) exp ( - x 2 / w 2 ) + T A ,
T f ( 0 ) = α l P 0 2 π w K s + T A .
I ( 0 ) = 2 P 0 / π w 2 ,
T f ( 0 ) = α l P 0 2 2 π w K s + T A ,

Metrics