Abstract

Optical interconnects for very large scale integration systems based on planar waveguide holograms are analyzed. The combination of low loss waveguides and multiplexed waveguide holograms allows the construction of various compact planar architectures with high interconnect density and low insertion loss. The long interaction lengths possible in planar structures result in high angular and wavelength selectivity. Holographic grating couplers and multiplexed planar holograms for 1-to-3 interconnects and 1-to-3 multiple wavelength interconnects were fabricated.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. H. Hartman, M. K. Grace, F. V. Richard, “An Efficient Lateral Fiberoptic Electronic Coupling Technique Suitable for VHSIC Applications,” IEEE/OSA J. Lightwave Techol. LT-4, 73 (1986).
    [CrossRef]
  2. P. R. Haugen, S. Rychnovsky, A. Husain, L. D. Hutcheson, “Optical Interconnects for High Speed Computing,” Opt. Eng. 25, 1076–1085 (1986).
    [CrossRef]
  3. R. K. Kostuk, J. W. Goodman, L. Hesselink, “Design Consideration for Holographic Optical Interconnects,” Appl. Opt. 26, 3947–3953 (1987).
    [CrossRef] [PubMed]
  4. M. R. Feldman, C. C. Guest, “Computer Generated Holographic Optical Elements for Optical Interconnection of Very Large Scale Integrated Circuits,” Appl. Opt. 26, 4377–4384 (1987).
    [CrossRef] [PubMed]
  5. T. Jannson, “Information Capacity of Bragg Holograms in Planar Optics,” J. Opt. Soc. Am. 72, 342–347 (1981).
    [CrossRef]
  6. E. Yablonovitch, E. Kapon, T. J. Gmitter, C. P. Yun, R. Bhat, “Double Heterostructure GaAs/AlGaAs Thin Film Diode Lasers on Glass Substrates,” IEEE Photon. Technol. Lett. 1, 41 (1989).
    [CrossRef]
  7. S. Ura, T. Suhara, H. Nishihara, “An Integrated-Optic Disk Pickup Device,” IEEE/OSA J. Lightwave Technol. LT-4, 913 (1986).
    [CrossRef]
  8. R. V. Schmidt, D. C. Flanders, C. V. Shank, R. D. Standley, “Narrow-Band Grating Filters for Thin-Film Optical Waveguides,” Appl. Phys. Lett. 25, 651 (1974).
    [CrossRef]
  9. A. C. Livanos, A. Katzir, A. Yariv, C. S. Hong, “Chirped-Grating Demultiplexers in Dielectric Waveguides,” Appl. Phys. Lett. 30, 519 (1977).
    [CrossRef]
  10. A. Yariv, H. W. Yen, “Bragg Amplification and Oscillation in Periodic Media,” Opt. Commun. 10, 120 (1974).
    [CrossRef]
  11. T. Jannson, Jannson, “Spectrum-Splitting Holoconcentrators,” J. Opt. Soc. Am. A 1, 1220–1221 (1984).
  12. A. Yariv, M. Nakamura, “Periodic Structures for Integrated Optics,” IEEE J. Quantum Electron. QE-13, 233 (1977).
    [CrossRef]
  13. K. Wagatsuma, H. Sakaki, S. Suito, “Mode Conversion and Optical Filtering of Obliquely Incident Waves in Corrugated Waveguide Filters,” IEEE J. Quantum Electron. QE-15, 632 (1979).
    [CrossRef]
  14. Paper in preparation, to be submitted to J. Opt. Soc. Am.
  15. J. W. Goodman, Statistical Optics (Wiley, New York, 1985).
  16. H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
  17. H. Kogelnik, T. P. Sosnowski, “Holographic Thin Film Couplers,” Bell Syst. Tech. J. 49, 1602 (1970).
  18. T. Aoyagi, Y. Aoyagi, S. Namba, “High-Efficiency Blazed Grating Couplers,” Appl. Phys. Lett. 29, 303 (1976).
    [CrossRef]

1989 (1)

E. Yablonovitch, E. Kapon, T. J. Gmitter, C. P. Yun, R. Bhat, “Double Heterostructure GaAs/AlGaAs Thin Film Diode Lasers on Glass Substrates,” IEEE Photon. Technol. Lett. 1, 41 (1989).
[CrossRef]

1987 (2)

1986 (3)

D. H. Hartman, M. K. Grace, F. V. Richard, “An Efficient Lateral Fiberoptic Electronic Coupling Technique Suitable for VHSIC Applications,” IEEE/OSA J. Lightwave Techol. LT-4, 73 (1986).
[CrossRef]

P. R. Haugen, S. Rychnovsky, A. Husain, L. D. Hutcheson, “Optical Interconnects for High Speed Computing,” Opt. Eng. 25, 1076–1085 (1986).
[CrossRef]

S. Ura, T. Suhara, H. Nishihara, “An Integrated-Optic Disk Pickup Device,” IEEE/OSA J. Lightwave Technol. LT-4, 913 (1986).
[CrossRef]

1984 (1)

T. Jannson, Jannson, “Spectrum-Splitting Holoconcentrators,” J. Opt. Soc. Am. A 1, 1220–1221 (1984).

1981 (1)

T. Jannson, “Information Capacity of Bragg Holograms in Planar Optics,” J. Opt. Soc. Am. 72, 342–347 (1981).
[CrossRef]

1979 (1)

K. Wagatsuma, H. Sakaki, S. Suito, “Mode Conversion and Optical Filtering of Obliquely Incident Waves in Corrugated Waveguide Filters,” IEEE J. Quantum Electron. QE-15, 632 (1979).
[CrossRef]

1977 (2)

A. Yariv, M. Nakamura, “Periodic Structures for Integrated Optics,” IEEE J. Quantum Electron. QE-13, 233 (1977).
[CrossRef]

A. C. Livanos, A. Katzir, A. Yariv, C. S. Hong, “Chirped-Grating Demultiplexers in Dielectric Waveguides,” Appl. Phys. Lett. 30, 519 (1977).
[CrossRef]

1976 (1)

T. Aoyagi, Y. Aoyagi, S. Namba, “High-Efficiency Blazed Grating Couplers,” Appl. Phys. Lett. 29, 303 (1976).
[CrossRef]

1974 (2)

A. Yariv, H. W. Yen, “Bragg Amplification and Oscillation in Periodic Media,” Opt. Commun. 10, 120 (1974).
[CrossRef]

R. V. Schmidt, D. C. Flanders, C. V. Shank, R. D. Standley, “Narrow-Band Grating Filters for Thin-Film Optical Waveguides,” Appl. Phys. Lett. 25, 651 (1974).
[CrossRef]

1970 (1)

H. Kogelnik, T. P. Sosnowski, “Holographic Thin Film Couplers,” Bell Syst. Tech. J. 49, 1602 (1970).

1969 (1)

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909 (1969).

Aoyagi, T.

T. Aoyagi, Y. Aoyagi, S. Namba, “High-Efficiency Blazed Grating Couplers,” Appl. Phys. Lett. 29, 303 (1976).
[CrossRef]

Aoyagi, Y.

T. Aoyagi, Y. Aoyagi, S. Namba, “High-Efficiency Blazed Grating Couplers,” Appl. Phys. Lett. 29, 303 (1976).
[CrossRef]

Bhat, R.

E. Yablonovitch, E. Kapon, T. J. Gmitter, C. P. Yun, R. Bhat, “Double Heterostructure GaAs/AlGaAs Thin Film Diode Lasers on Glass Substrates,” IEEE Photon. Technol. Lett. 1, 41 (1989).
[CrossRef]

Feldman, M. R.

Flanders, D. C.

R. V. Schmidt, D. C. Flanders, C. V. Shank, R. D. Standley, “Narrow-Band Grating Filters for Thin-Film Optical Waveguides,” Appl. Phys. Lett. 25, 651 (1974).
[CrossRef]

Gmitter, T. J.

E. Yablonovitch, E. Kapon, T. J. Gmitter, C. P. Yun, R. Bhat, “Double Heterostructure GaAs/AlGaAs Thin Film Diode Lasers on Glass Substrates,” IEEE Photon. Technol. Lett. 1, 41 (1989).
[CrossRef]

Goodman, J. W.

Grace, M. K.

D. H. Hartman, M. K. Grace, F. V. Richard, “An Efficient Lateral Fiberoptic Electronic Coupling Technique Suitable for VHSIC Applications,” IEEE/OSA J. Lightwave Techol. LT-4, 73 (1986).
[CrossRef]

Guest, C. C.

Hartman, D. H.

D. H. Hartman, M. K. Grace, F. V. Richard, “An Efficient Lateral Fiberoptic Electronic Coupling Technique Suitable for VHSIC Applications,” IEEE/OSA J. Lightwave Techol. LT-4, 73 (1986).
[CrossRef]

Haugen, P. R.

P. R. Haugen, S. Rychnovsky, A. Husain, L. D. Hutcheson, “Optical Interconnects for High Speed Computing,” Opt. Eng. 25, 1076–1085 (1986).
[CrossRef]

Hesselink, L.

Hong, C. S.

A. C. Livanos, A. Katzir, A. Yariv, C. S. Hong, “Chirped-Grating Demultiplexers in Dielectric Waveguides,” Appl. Phys. Lett. 30, 519 (1977).
[CrossRef]

Husain, A.

P. R. Haugen, S. Rychnovsky, A. Husain, L. D. Hutcheson, “Optical Interconnects for High Speed Computing,” Opt. Eng. 25, 1076–1085 (1986).
[CrossRef]

Hutcheson, L. D.

P. R. Haugen, S. Rychnovsky, A. Husain, L. D. Hutcheson, “Optical Interconnects for High Speed Computing,” Opt. Eng. 25, 1076–1085 (1986).
[CrossRef]

Jannson,

T. Jannson, Jannson, “Spectrum-Splitting Holoconcentrators,” J. Opt. Soc. Am. A 1, 1220–1221 (1984).

Jannson, T.

T. Jannson, Jannson, “Spectrum-Splitting Holoconcentrators,” J. Opt. Soc. Am. A 1, 1220–1221 (1984).

T. Jannson, “Information Capacity of Bragg Holograms in Planar Optics,” J. Opt. Soc. Am. 72, 342–347 (1981).
[CrossRef]

Kapon, E.

E. Yablonovitch, E. Kapon, T. J. Gmitter, C. P. Yun, R. Bhat, “Double Heterostructure GaAs/AlGaAs Thin Film Diode Lasers on Glass Substrates,” IEEE Photon. Technol. Lett. 1, 41 (1989).
[CrossRef]

Katzir, A.

A. C. Livanos, A. Katzir, A. Yariv, C. S. Hong, “Chirped-Grating Demultiplexers in Dielectric Waveguides,” Appl. Phys. Lett. 30, 519 (1977).
[CrossRef]

Kogelnik, H.

H. Kogelnik, T. P. Sosnowski, “Holographic Thin Film Couplers,” Bell Syst. Tech. J. 49, 1602 (1970).

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909 (1969).

Kostuk, R. K.

Livanos, A. C.

A. C. Livanos, A. Katzir, A. Yariv, C. S. Hong, “Chirped-Grating Demultiplexers in Dielectric Waveguides,” Appl. Phys. Lett. 30, 519 (1977).
[CrossRef]

Nakamura, M.

A. Yariv, M. Nakamura, “Periodic Structures for Integrated Optics,” IEEE J. Quantum Electron. QE-13, 233 (1977).
[CrossRef]

Namba, S.

T. Aoyagi, Y. Aoyagi, S. Namba, “High-Efficiency Blazed Grating Couplers,” Appl. Phys. Lett. 29, 303 (1976).
[CrossRef]

Nishihara, H.

S. Ura, T. Suhara, H. Nishihara, “An Integrated-Optic Disk Pickup Device,” IEEE/OSA J. Lightwave Technol. LT-4, 913 (1986).
[CrossRef]

Richard, F. V.

D. H. Hartman, M. K. Grace, F. V. Richard, “An Efficient Lateral Fiberoptic Electronic Coupling Technique Suitable for VHSIC Applications,” IEEE/OSA J. Lightwave Techol. LT-4, 73 (1986).
[CrossRef]

Rychnovsky, S.

P. R. Haugen, S. Rychnovsky, A. Husain, L. D. Hutcheson, “Optical Interconnects for High Speed Computing,” Opt. Eng. 25, 1076–1085 (1986).
[CrossRef]

Sakaki, H.

K. Wagatsuma, H. Sakaki, S. Suito, “Mode Conversion and Optical Filtering of Obliquely Incident Waves in Corrugated Waveguide Filters,” IEEE J. Quantum Electron. QE-15, 632 (1979).
[CrossRef]

Schmidt, R. V.

R. V. Schmidt, D. C. Flanders, C. V. Shank, R. D. Standley, “Narrow-Band Grating Filters for Thin-Film Optical Waveguides,” Appl. Phys. Lett. 25, 651 (1974).
[CrossRef]

Shank, C. V.

R. V. Schmidt, D. C. Flanders, C. V. Shank, R. D. Standley, “Narrow-Band Grating Filters for Thin-Film Optical Waveguides,” Appl. Phys. Lett. 25, 651 (1974).
[CrossRef]

Sosnowski, T. P.

H. Kogelnik, T. P. Sosnowski, “Holographic Thin Film Couplers,” Bell Syst. Tech. J. 49, 1602 (1970).

Standley, R. D.

R. V. Schmidt, D. C. Flanders, C. V. Shank, R. D. Standley, “Narrow-Band Grating Filters for Thin-Film Optical Waveguides,” Appl. Phys. Lett. 25, 651 (1974).
[CrossRef]

Suhara, T.

S. Ura, T. Suhara, H. Nishihara, “An Integrated-Optic Disk Pickup Device,” IEEE/OSA J. Lightwave Technol. LT-4, 913 (1986).
[CrossRef]

Suito, S.

K. Wagatsuma, H. Sakaki, S. Suito, “Mode Conversion and Optical Filtering of Obliquely Incident Waves in Corrugated Waveguide Filters,” IEEE J. Quantum Electron. QE-15, 632 (1979).
[CrossRef]

Ura, S.

S. Ura, T. Suhara, H. Nishihara, “An Integrated-Optic Disk Pickup Device,” IEEE/OSA J. Lightwave Technol. LT-4, 913 (1986).
[CrossRef]

Wagatsuma, K.

K. Wagatsuma, H. Sakaki, S. Suito, “Mode Conversion and Optical Filtering of Obliquely Incident Waves in Corrugated Waveguide Filters,” IEEE J. Quantum Electron. QE-15, 632 (1979).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, E. Kapon, T. J. Gmitter, C. P. Yun, R. Bhat, “Double Heterostructure GaAs/AlGaAs Thin Film Diode Lasers on Glass Substrates,” IEEE Photon. Technol. Lett. 1, 41 (1989).
[CrossRef]

Yariv, A.

A. C. Livanos, A. Katzir, A. Yariv, C. S. Hong, “Chirped-Grating Demultiplexers in Dielectric Waveguides,” Appl. Phys. Lett. 30, 519 (1977).
[CrossRef]

A. Yariv, M. Nakamura, “Periodic Structures for Integrated Optics,” IEEE J. Quantum Electron. QE-13, 233 (1977).
[CrossRef]

A. Yariv, H. W. Yen, “Bragg Amplification and Oscillation in Periodic Media,” Opt. Commun. 10, 120 (1974).
[CrossRef]

Yen, H. W.

A. Yariv, H. W. Yen, “Bragg Amplification and Oscillation in Periodic Media,” Opt. Commun. 10, 120 (1974).
[CrossRef]

Yun, C. P.

E. Yablonovitch, E. Kapon, T. J. Gmitter, C. P. Yun, R. Bhat, “Double Heterostructure GaAs/AlGaAs Thin Film Diode Lasers on Glass Substrates,” IEEE Photon. Technol. Lett. 1, 41 (1989).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

T. Aoyagi, Y. Aoyagi, S. Namba, “High-Efficiency Blazed Grating Couplers,” Appl. Phys. Lett. 29, 303 (1976).
[CrossRef]

R. V. Schmidt, D. C. Flanders, C. V. Shank, R. D. Standley, “Narrow-Band Grating Filters for Thin-Film Optical Waveguides,” Appl. Phys. Lett. 25, 651 (1974).
[CrossRef]

A. C. Livanos, A. Katzir, A. Yariv, C. S. Hong, “Chirped-Grating Demultiplexers in Dielectric Waveguides,” Appl. Phys. Lett. 30, 519 (1977).
[CrossRef]

Bell Syst. Tech. J. (2)

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909 (1969).

H. Kogelnik, T. P. Sosnowski, “Holographic Thin Film Couplers,” Bell Syst. Tech. J. 49, 1602 (1970).

IEEE J. Quantum Electron. (2)

A. Yariv, M. Nakamura, “Periodic Structures for Integrated Optics,” IEEE J. Quantum Electron. QE-13, 233 (1977).
[CrossRef]

K. Wagatsuma, H. Sakaki, S. Suito, “Mode Conversion and Optical Filtering of Obliquely Incident Waves in Corrugated Waveguide Filters,” IEEE J. Quantum Electron. QE-15, 632 (1979).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

E. Yablonovitch, E. Kapon, T. J. Gmitter, C. P. Yun, R. Bhat, “Double Heterostructure GaAs/AlGaAs Thin Film Diode Lasers on Glass Substrates,” IEEE Photon. Technol. Lett. 1, 41 (1989).
[CrossRef]

IEEE/OSA J. Lightwave Technol. (1)

S. Ura, T. Suhara, H. Nishihara, “An Integrated-Optic Disk Pickup Device,” IEEE/OSA J. Lightwave Technol. LT-4, 913 (1986).
[CrossRef]

IEEE/OSA J. Lightwave Techol. (1)

D. H. Hartman, M. K. Grace, F. V. Richard, “An Efficient Lateral Fiberoptic Electronic Coupling Technique Suitable for VHSIC Applications,” IEEE/OSA J. Lightwave Techol. LT-4, 73 (1986).
[CrossRef]

J. Opt. Soc. Am. (1)

T. Jannson, “Information Capacity of Bragg Holograms in Planar Optics,” J. Opt. Soc. Am. 72, 342–347 (1981).
[CrossRef]

J. Opt. Soc. Am. A (1)

T. Jannson, Jannson, “Spectrum-Splitting Holoconcentrators,” J. Opt. Soc. Am. A 1, 1220–1221 (1984).

Opt. Commun. (1)

A. Yariv, H. W. Yen, “Bragg Amplification and Oscillation in Periodic Media,” Opt. Commun. 10, 120 (1974).
[CrossRef]

Opt. Eng. (1)

P. R. Haugen, S. Rychnovsky, A. Husain, L. D. Hutcheson, “Optical Interconnects for High Speed Computing,” Opt. Eng. 25, 1076–1085 (1986).
[CrossRef]

Other (2)

Paper in preparation, to be submitted to J. Opt. Soc. Am.

J. W. Goodman, Statistical Optics (Wiley, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of a dual plane architecture of optical VLSI interconnects. The optoelectronic components plane contains VLSI chips as well as optoelectronic components such as laser diodes, modulators, and detectors. The optical plane contains grating couplers and high density multiplexed waveguide holograms.

Fig. 2
Fig. 2

Schematic diagram of a multiplanar interconnect architecture.

Fig. 3
Fig. 3

Schematic diagram of a planar waveguide with a phase reflection grating reconstructed with a guided wave.

Fig. 4
Fig. 4

(a) Partially embedded waveguide hologram structure; (b) planar hologram fully embedded in the waveguide.

Fig. 5
Fig. 5

(a) Schematic diagram of a grating coupler reconstruction—side view; (b) schematic diagram of a planar hologram reconstruction—top view.

Fig. 6
Fig. 6

Schematic diagram of the right angle recording setup for recording grating couplers and planar holograms. The L-bracket assures that the hologram planes are perpendicular to the substrate. Rotation in two planes allows adjusting the grating vector magnitude and position.

Fig. 7
Fig. 7

Input and output grating couplers on a single mode waveguide reconstructed with a He–Ne laser beam.

Fig. 8
Fig. 8

Three-grating planar hologram reconstructed with a wavelength of 633 nm; (b) three-grating multiple wavelength planar hologram reconstructed with 633-, 610-, and 591-nm beams diffracted at 60, 45, and 30°, respectively.

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

S ( 0 ) = - k sinh ( α L ) α cosh ( α L ) - i δ sinh ( α L ) ,
α = ( k 2 - δ 2 ) 1 / 2 ,
2 δ = K - ( β R cos θ R + β S cos θ S ) ,
k = j ω 0 4 - Δ n 2 E R ( x ) · E s ( x ) d x .
k = k Δ n 2 cos ( θ R + θ S ) ,
k = j ω 0 4 - h 0 E R ( x ) · E S ( x ) d x ,
n = n f , n = n f + Δ n cos ( K z ) ,
Δ n 2 2 n f Δ n .
k = 2 k p n f Δ n cos ( θ R + θ S ) ,
k p = j ω 0 4 - Δ h 0 E R ( x ) · E S ( x ) d x ( Δ h h ) 3 k ,
2 δ = - 4 π N λ ( sin θ 0 Δ θ + Δ λ λ cos θ 0 ) .
η = S ( 0 ) 2 = tan 2 ( k L ) ,
k = 2 n j Δ n k cos ( 2 θ 0 ) .
k L = π ,
Δ n = π 2 n j k cos ( 2 θ 0 ) L .
Δ n 0.5 L ( μ m ) ,
M = Δ n max 2 Δ n = Δ n max L .
Δ n max = 2 M π 2 Δ n 2 M Δ n
M = ( Δ n max L ) 2 ,
M lowerbound = 50 [ from Eq . ( 17 ) ] , M upperbound = 2500 [ from Eq . ( 18 ) ] .
Δ θ = 4 λ 2 π N sin θ 0 L 0.06 ° , Δ λ = 4 λ 2 4 λ N cos θ 0 L 2 A ˚ .
k i sin β + K = k o sin θ G ,
sin β r = λ r 2 d = n f λ r ( sin θ G - sin β ) 2 λ
d = λ 2 N sin α 2 ,
k FP = 2 n f Δ n k cos ( θ R + θ S ) ,
k PP = 2 n f Δ n ( Δ h PP / h ) 3 k cos ( θ R + θ S ) ,
K SR = ( n f 2 - 1 ) ( Δ h SR / h ) 3 k cos ( θ R + θ S ) ,

Metrics