Abstract

A recognized model for an all-optical digital computer consists of arrays of optical logic devices interconnected in free space with bulk optical components. A problem with this approach is that device arrays must be spaced to allow for components placed between them such as lenses, gratings, and beam splitters. The latency introduced by this spacing may be greater than device switching times, which means that tight loop processing of digital information is not possible. A solution to this problem is to replace large optical components with monolithically fabricated devices, lenses, mirrors, beam splitters, and combiners. Some connection freedom is lost due to practical limits on configurations of small components. These limits and a method to minimize their effects are explored here. It is concluded that log2N optical interconnects such as perfect shuffles and crossovers are not necessary for efficient digital architectures and that simple split, shift, and combine operations may be preferred for simpler optical implementations.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, L. M. F. Chirovsky, “The Symmetric Self-Electrooptic Effect Device,” in Postdeadline Papers, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1987), p. 249.
  2. J. L. Jewell, A. Scherer, S. L. McCall, A. C. Gossard, J. H. English, “GaAs-AlAs Monolithic Microresonator Arrays,” Appl. Phys. Lett. 51, 94–00 (July13, 1987).
    [CrossRef]
  3. J. Jahns, M. J. Murdocca, “Crossover Networks and Their Optical Implementation,” Appl. Opt. 27, 3155–3160 (1988).
    [CrossRef] [PubMed]
  4. M. J. Murdocca, A. Huang, J. Jahns, N. Streibel, “Optical Design of Programmable Logic Arrays,” Appl. Opt. 27, 1651–1660 (1988).
    [CrossRef] [PubMed]
  5. J. L. Jewell, S. L. McCall, “Microoptic Systems: Essential for Optical Computing,” in Technical Digest, Topical Meeting on Optical Computing (Optical Society of America, Washington, DC, 1989), p. 136.
  6. F. W. Ostermayer, P. A. Kohl, R. H. Burton, “Photoelectrochemical Etching of Integral Lenses on InGaAs/InP Light-Emitting Diodes,” Appl. Phys. Lett. 43, 642–000 (1Oct.1983).
    [CrossRef]
  7. M. J. Murdocca, A Digital Design Methodology for Optical Computing, The MIT Press (1990).

1988 (2)

1987 (1)

J. L. Jewell, A. Scherer, S. L. McCall, A. C. Gossard, J. H. English, “GaAs-AlAs Monolithic Microresonator Arrays,” Appl. Phys. Lett. 51, 94–00 (July13, 1987).
[CrossRef]

1983 (1)

F. W. Ostermayer, P. A. Kohl, R. H. Burton, “Photoelectrochemical Etching of Integral Lenses on InGaAs/InP Light-Emitting Diodes,” Appl. Phys. Lett. 43, 642–000 (1Oct.1983).
[CrossRef]

Burton, R. H.

F. W. Ostermayer, P. A. Kohl, R. H. Burton, “Photoelectrochemical Etching of Integral Lenses on InGaAs/InP Light-Emitting Diodes,” Appl. Phys. Lett. 43, 642–000 (1Oct.1983).
[CrossRef]

Chirovsky, L. M. F.

A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, L. M. F. Chirovsky, “The Symmetric Self-Electrooptic Effect Device,” in Postdeadline Papers, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1987), p. 249.

Cunningham, J. E.

A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, L. M. F. Chirovsky, “The Symmetric Self-Electrooptic Effect Device,” in Postdeadline Papers, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1987), p. 249.

English, J. H.

J. L. Jewell, A. Scherer, S. L. McCall, A. C. Gossard, J. H. English, “GaAs-AlAs Monolithic Microresonator Arrays,” Appl. Phys. Lett. 51, 94–00 (July13, 1987).
[CrossRef]

Gossard, A. C.

J. L. Jewell, A. Scherer, S. L. McCall, A. C. Gossard, J. H. English, “GaAs-AlAs Monolithic Microresonator Arrays,” Appl. Phys. Lett. 51, 94–00 (July13, 1987).
[CrossRef]

Henry, J. E.

A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, L. M. F. Chirovsky, “The Symmetric Self-Electrooptic Effect Device,” in Postdeadline Papers, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1987), p. 249.

Hinton, H. S.

A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, L. M. F. Chirovsky, “The Symmetric Self-Electrooptic Effect Device,” in Postdeadline Papers, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1987), p. 249.

Huang, A.

Jahns, J.

Jewell, J. L.

J. L. Jewell, A. Scherer, S. L. McCall, A. C. Gossard, J. H. English, “GaAs-AlAs Monolithic Microresonator Arrays,” Appl. Phys. Lett. 51, 94–00 (July13, 1987).
[CrossRef]

J. L. Jewell, S. L. McCall, “Microoptic Systems: Essential for Optical Computing,” in Technical Digest, Topical Meeting on Optical Computing (Optical Society of America, Washington, DC, 1989), p. 136.

Kohl, P. A.

F. W. Ostermayer, P. A. Kohl, R. H. Burton, “Photoelectrochemical Etching of Integral Lenses on InGaAs/InP Light-Emitting Diodes,” Appl. Phys. Lett. 43, 642–000 (1Oct.1983).
[CrossRef]

Lentine, A. L.

A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, L. M. F. Chirovsky, “The Symmetric Self-Electrooptic Effect Device,” in Postdeadline Papers, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1987), p. 249.

McCall, S. L.

J. L. Jewell, A. Scherer, S. L. McCall, A. C. Gossard, J. H. English, “GaAs-AlAs Monolithic Microresonator Arrays,” Appl. Phys. Lett. 51, 94–00 (July13, 1987).
[CrossRef]

J. L. Jewell, S. L. McCall, “Microoptic Systems: Essential for Optical Computing,” in Technical Digest, Topical Meeting on Optical Computing (Optical Society of America, Washington, DC, 1989), p. 136.

Miller, D. A. B.

A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, L. M. F. Chirovsky, “The Symmetric Self-Electrooptic Effect Device,” in Postdeadline Papers, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1987), p. 249.

Murdocca, M. J.

Ostermayer, F. W.

F. W. Ostermayer, P. A. Kohl, R. H. Burton, “Photoelectrochemical Etching of Integral Lenses on InGaAs/InP Light-Emitting Diodes,” Appl. Phys. Lett. 43, 642–000 (1Oct.1983).
[CrossRef]

Scherer, A.

J. L. Jewell, A. Scherer, S. L. McCall, A. C. Gossard, J. H. English, “GaAs-AlAs Monolithic Microresonator Arrays,” Appl. Phys. Lett. 51, 94–00 (July13, 1987).
[CrossRef]

Streibel, N.

Appl. Opt. (2)

Appl. Phys. Lett. (2)

J. L. Jewell, A. Scherer, S. L. McCall, A. C. Gossard, J. H. English, “GaAs-AlAs Monolithic Microresonator Arrays,” Appl. Phys. Lett. 51, 94–00 (July13, 1987).
[CrossRef]

F. W. Ostermayer, P. A. Kohl, R. H. Burton, “Photoelectrochemical Etching of Integral Lenses on InGaAs/InP Light-Emitting Diodes,” Appl. Phys. Lett. 43, 642–000 (1Oct.1983).
[CrossRef]

Other (3)

M. J. Murdocca, A Digital Design Methodology for Optical Computing, The MIT Press (1990).

A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, L. M. F. Chirovsky, “The Symmetric Self-Electrooptic Effect Device,” in Postdeadline Papers, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1987), p. 249.

J. L. Jewell, S. L. McCall, “Microoptic Systems: Essential for Optical Computing,” in Technical Digest, Topical Meeting on Optical Computing (Optical Society of America, Washington, DC, 1989), p. 136.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Etched arrays of microresonators. The smallest working devices are ~1 μm in diameter. Switch-off time is <5 ps, and relaxation time is 30 ps at room temperature. (courtesy of Jack Jewell, AT&T Bell Laboratories).

Fig. 2
Fig. 2

(a) Schematic of one stage of the crossover interconnect. A 2-D input image is split into two identical copies. One copy is imaged onto a mirror where it is reflected back through the system to the output plane. The second copy is permuted according to the period of the prism array and combined with the output image. The interconnect is customized by setting masks in the image planes that block light at selected locations. (b) Connectivity achieved for one row of data passing through the crossover stage shown in panel (a).

Fig. 3
Fig. 3

Arrays of optical logic gates are interconnected with crossovers.

Fig. 4
Fig. 4

Arrays of optical logic gates are interconnected with split, shift, and combine operations. Masks that customize the interconnects at selected sites are allowed in front of device arrays or behind them (courtesy of Jack Jewell, AT&T Bell Laboratories).

Fig. 5
Fig. 5

Microlenslet array photoelectrochemically etched on InP. Lens diameters are ~300 μm (Fred Ostermayer, AT&T Bell Laboratories, courtesy of Jack Jewell, AT&T Bell Laboratories).

Fig. 6
Fig. 6

Dual rail serial adder is mapped onto a circuit making use of split, shift, and combine interconnects; x and y are the streams to be added; z is the output stream; s is the carry. All logic device perform the same function at each stage (or or nor), and all devices have fanin and fanout of two. Masking is allowed in the device image planes only, so that each logic device has either two outputs or no outputs. Logic devices that appear to have only a single output have a second output that is imaged off the array due to the regular interconnection pattern.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

s t + 1 = x + y + s ¯ ¯ + x + y + s ¯ + x + y ¯ + s ¯ + x ¯ + y + s ¯ ¯ ; s ¯ t + 1 = x ¯ + y ¯ + s ¯ + x ¯ + y ¯ + s ¯ ¯ + x ¯ + y + s ¯ ¯ + x + y ¯ + s ¯ ¯ ¯ ; z t + 1 = x + y + s ¯ + x + y ¯ + s ¯ ¯ + x ¯ + y ¯ + s ¯ + x ¯ + y + s ¯ ¯ ¯ ; z ¯ t + 1 = x + y + s ¯ ¯ + x + y ¯ + s ¯ + x ¯ + y ¯ + s ¯ ¯ + x ¯ + y + s ¯ ¯ .

Metrics