Abstract

A recognized model for an all-optical digital computer consists of arrays of optical logic devices interconnected in free space with bulk optical components. A problem with this approach is that device arrays must be spaced to allow for components placed between them such as lenses, gratings, and beam splitters. The latency introduced by this spacing may be greater than device switching times, which means that tight loop processing of digital information is not possible. A solution to this problem is to replace large optical components with monolithically fabricated devices, lenses, mirrors, beam splitters, and combiners. Some connection freedom is lost due to practical limits on configurations of small components. These limits and a method to minimize their effects are explored here. It is concluded that log2N optical interconnects such as perfect shuffles and crossovers are not necessary for efficient digital architectures and that simple split, shift, and combine operations may be preferred for simpler optical implementations.

© 1990 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical design of a digital switch

Miles Murdocca and Thomas J. Cloonan
Appl. Opt. 28(13) 2505-2517 (1989)

Optical design of programmable logic arrays

Miles J. Murdocca, Alan Huang, Jurgen Jahns, and Norbert Streibl
Appl. Opt. 27(9) 1651-1660 (1988)

Design for an optical random access memory

Miles J. Murdocca and Binay Sugla
Appl. Opt. 28(1) 182-188 (1989)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription