Abstract

A space invariant multiple imaging system using an array of tilted mirrors is proposed for optical free-space regular interconnections. The system has the potential for large number and high density of input nodes, high fanout capability, and low power loss. An eighteen-cube interconnection of 512 × 512 nodes could be implemented in this system using a 6 × 6 mirror array. Experimental results for a four-cube interconnection are shown.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, “Fanin and Fanout with Optical Interconnections,” Opt. Acta 32, 12, 1489–1496 (1985).
    [Crossref]
  2. J. W. Goodman, J. F. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850–865 (1984).
    [Crossref]
  3. A. Dickinson, M. E. Prise, “A Free Space Optical Interconnection Scheme,” in Topical Meeting on Optical Computing Technical Digest, (Optical Society of America, Washington, DC, 1989), p. 132.
  4. R. K. Kostuk, J. W. Goodman, L. Hesselink, “Optical Imaging to Microelectronic Chip-to-Chip Interconnections,” Appl. Opt. 24, 2851–2858 (1985).
    [Crossref] [PubMed]
  5. A. W. Lohmann, “What Classical Optics Can Do for the Digital Computer,” Appl. Opt. 25, 1543–1549 (1986).
    [Crossref] [PubMed]
  6. G. Eichmann, Y. Li, “Compact Optical Generalized Perfect Shuffle,” Appl. Opt. 26, 1167–1169 (1987).
    [Crossref]
  7. G. E. Lohman, A. W. Lohmann, “Optical Interconnection Network Utilizing Diffraction Gratings,” Opt. Eng. 27, 893–900 (1988).
    [Crossref]
  8. Q. W. Song, F. T. S. Yu, “Generalized Perfect Shuffle Using Optical Spatial Filtering,” Appl. Opt. 27, 1222–1223 (1988).
    [Crossref] [PubMed]
  9. K. H. Brenner, A. Huang, “Optical Implementation of the Perfect Shuffle Interconnection,” Appl. Opt. 27, 135–137 (1988).
    [Crossref] [PubMed]
  10. K.-H. Brenner, A. Huang, N. Streibl, “Digital Optical computing with Symbolic Substitution,” Appl. Opt. 25, 3054–3060 (1986).
    [Crossref] [PubMed]
  11. C. W. Stirk, R. A. Athale, M. W. Haney, “Folded Perfect Shuffle Optical Processor,” Appl. Opt. 27, 202–203 (1988).
    [Crossref] [PubMed]
  12. Y. Sheng, “Light Effective 2-D Optical Perfect Shuffle Using Fresnel Mirrors,” Appl. Opt. 28, 3290–3292 (1989).
    [Crossref] [PubMed]
  13. T. Feng, “A Survey of Interconnection Networks,” IEEE Comput. 14, 12–27 (1981).
    [Crossref]
  14. N. F. Borrelli, D. L. Morse, “Microlens Arrays Produced by a Photolytic Technique,” Appl. Opt. 27, 476–479 (1988).
    [Crossref] [PubMed]
  15. A. S. Kumar, R. M. Vasu, “Multiple Imaging and Multichannel Optical Processing with Split Lenses,” Appl. Opt. 26, 5345–5349 (1987).
    [Crossref] [PubMed]
  16. R. K. Kostuk, J. W. Goodman, L. Hesselink, “Design Considerations for Holographic Optical Interconnects,” Appl. Opt. 26, 3947–3953 (1987).
    [Crossref] [PubMed]
  17. J. M. Florence, “Joint-Transform Correlator Systems Using Deformable-Mirror Spatial Light Modulators,” Opt. Lett. 14, 341–343 (1989).
    [Crossref] [PubMed]
  18. A. A. Sawchuk, “3-D Optical Interconnection Networks,” Proc. Soc. Photo-Opt. Instrum. Eng. 813, 547–548 (1987).
  19. L. N. Bhuyan, D. P. Agrawal, “Generalized Hypercube and Hyperbus Structures for a Computer Network,” IEEE Trans. Comput. C-33, 323–333 (1984).
    [Crossref]

1989 (2)

1988 (5)

1987 (4)

1986 (2)

1985 (2)

1984 (2)

J. W. Goodman, J. F. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850–865 (1984).
[Crossref]

L. N. Bhuyan, D. P. Agrawal, “Generalized Hypercube and Hyperbus Structures for a Computer Network,” IEEE Trans. Comput. C-33, 323–333 (1984).
[Crossref]

1981 (1)

T. Feng, “A Survey of Interconnection Networks,” IEEE Comput. 14, 12–27 (1981).
[Crossref]

Agrawal, D. P.

L. N. Bhuyan, D. P. Agrawal, “Generalized Hypercube and Hyperbus Structures for a Computer Network,” IEEE Trans. Comput. C-33, 323–333 (1984).
[Crossref]

Athale, R. A.

C. W. Stirk, R. A. Athale, M. W. Haney, “Folded Perfect Shuffle Optical Processor,” Appl. Opt. 27, 202–203 (1988).
[Crossref] [PubMed]

J. W. Goodman, J. F. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850–865 (1984).
[Crossref]

Bhuyan, L. N.

L. N. Bhuyan, D. P. Agrawal, “Generalized Hypercube and Hyperbus Structures for a Computer Network,” IEEE Trans. Comput. C-33, 323–333 (1984).
[Crossref]

Borrelli, N. F.

Brenner, K. H.

Brenner, K.-H.

Dickinson, A.

A. Dickinson, M. E. Prise, “A Free Space Optical Interconnection Scheme,” in Topical Meeting on Optical Computing Technical Digest, (Optical Society of America, Washington, DC, 1989), p. 132.

Eichmann, G.

Feng, T.

T. Feng, “A Survey of Interconnection Networks,” IEEE Comput. 14, 12–27 (1981).
[Crossref]

Florence, J. M.

Goodman, J. W.

R. K. Kostuk, J. W. Goodman, L. Hesselink, “Design Considerations for Holographic Optical Interconnects,” Appl. Opt. 26, 3947–3953 (1987).
[Crossref] [PubMed]

J. W. Goodman, “Fanin and Fanout with Optical Interconnections,” Opt. Acta 32, 12, 1489–1496 (1985).
[Crossref]

R. K. Kostuk, J. W. Goodman, L. Hesselink, “Optical Imaging to Microelectronic Chip-to-Chip Interconnections,” Appl. Opt. 24, 2851–2858 (1985).
[Crossref] [PubMed]

J. W. Goodman, J. F. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850–865 (1984).
[Crossref]

Haney, M. W.

Hesselink, L.

Huang, A.

Kostuk, R. K.

Kumar, A. S.

Kung, S. Y.

J. W. Goodman, J. F. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850–865 (1984).
[Crossref]

Leonberger, J. F.

J. W. Goodman, J. F. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850–865 (1984).
[Crossref]

Li, Y.

Lohman, G. E.

G. E. Lohman, A. W. Lohmann, “Optical Interconnection Network Utilizing Diffraction Gratings,” Opt. Eng. 27, 893–900 (1988).
[Crossref]

Lohmann, A. W.

G. E. Lohman, A. W. Lohmann, “Optical Interconnection Network Utilizing Diffraction Gratings,” Opt. Eng. 27, 893–900 (1988).
[Crossref]

A. W. Lohmann, “What Classical Optics Can Do for the Digital Computer,” Appl. Opt. 25, 1543–1549 (1986).
[Crossref] [PubMed]

Morse, D. L.

Prise, M. E.

A. Dickinson, M. E. Prise, “A Free Space Optical Interconnection Scheme,” in Topical Meeting on Optical Computing Technical Digest, (Optical Society of America, Washington, DC, 1989), p. 132.

Sawchuk, A. A.

A. A. Sawchuk, “3-D Optical Interconnection Networks,” Proc. Soc. Photo-Opt. Instrum. Eng. 813, 547–548 (1987).

Sheng, Y.

Song, Q. W.

Stirk, C. W.

Streibl, N.

Vasu, R. M.

Yu, F. T. S.

Appl. Opt. (11)

R. K. Kostuk, J. W. Goodman, L. Hesselink, “Optical Imaging to Microelectronic Chip-to-Chip Interconnections,” Appl. Opt. 24, 2851–2858 (1985).
[Crossref] [PubMed]

A. W. Lohmann, “What Classical Optics Can Do for the Digital Computer,” Appl. Opt. 25, 1543–1549 (1986).
[Crossref] [PubMed]

G. Eichmann, Y. Li, “Compact Optical Generalized Perfect Shuffle,” Appl. Opt. 26, 1167–1169 (1987).
[Crossref]

Q. W. Song, F. T. S. Yu, “Generalized Perfect Shuffle Using Optical Spatial Filtering,” Appl. Opt. 27, 1222–1223 (1988).
[Crossref] [PubMed]

K. H. Brenner, A. Huang, “Optical Implementation of the Perfect Shuffle Interconnection,” Appl. Opt. 27, 135–137 (1988).
[Crossref] [PubMed]

K.-H. Brenner, A. Huang, N. Streibl, “Digital Optical computing with Symbolic Substitution,” Appl. Opt. 25, 3054–3060 (1986).
[Crossref] [PubMed]

C. W. Stirk, R. A. Athale, M. W. Haney, “Folded Perfect Shuffle Optical Processor,” Appl. Opt. 27, 202–203 (1988).
[Crossref] [PubMed]

Y. Sheng, “Light Effective 2-D Optical Perfect Shuffle Using Fresnel Mirrors,” Appl. Opt. 28, 3290–3292 (1989).
[Crossref] [PubMed]

N. F. Borrelli, D. L. Morse, “Microlens Arrays Produced by a Photolytic Technique,” Appl. Opt. 27, 476–479 (1988).
[Crossref] [PubMed]

A. S. Kumar, R. M. Vasu, “Multiple Imaging and Multichannel Optical Processing with Split Lenses,” Appl. Opt. 26, 5345–5349 (1987).
[Crossref] [PubMed]

R. K. Kostuk, J. W. Goodman, L. Hesselink, “Design Considerations for Holographic Optical Interconnects,” Appl. Opt. 26, 3947–3953 (1987).
[Crossref] [PubMed]

IEEE Comput (1)

T. Feng, “A Survey of Interconnection Networks,” IEEE Comput. 14, 12–27 (1981).
[Crossref]

IEEE Trans. Comput. (1)

L. N. Bhuyan, D. P. Agrawal, “Generalized Hypercube and Hyperbus Structures for a Computer Network,” IEEE Trans. Comput. C-33, 323–333 (1984).
[Crossref]

Opt. Acta (1)

J. W. Goodman, “Fanin and Fanout with Optical Interconnections,” Opt. Acta 32, 12, 1489–1496 (1985).
[Crossref]

Opt. Eng. (1)

G. E. Lohman, A. W. Lohmann, “Optical Interconnection Network Utilizing Diffraction Gratings,” Opt. Eng. 27, 893–900 (1988).
[Crossref]

Opt. Lett. (1)

Proc. IEEE (1)

J. W. Goodman, J. F. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850–865 (1984).
[Crossref]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

A. A. Sawchuk, “3-D Optical Interconnection Networks,” Proc. Soc. Photo-Opt. Instrum. Eng. 813, 547–548 (1987).

Other (1)

A. Dickinson, M. E. Prise, “A Free Space Optical Interconnection Scheme,” in Topical Meeting on Optical Computing Technical Digest, (Optical Society of America, Washington, DC, 1989), p. 132.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Multiple imaging system using an array of tilted mirrors M R .

Fig. 2
Fig. 2

Entrance part of Fig. 1. The aperture partitioning for multiple imaging requires the beams from every input source to cover the whole entrance aperture. This introduces a loss of energy.

Fig. 3
Fig. 3

Four cube interconnection. The input nodes are in a 2-D matrix. The nodes with the binary numbers differing in one position are interconnected.

Fig. 4
Fig. 4

(a) Input array for four cubes. The sixteen nodes are placed in a 5 × 5 matrix with the third column and third row empty. Each square node is subdivided into sixteen small squares. The position of a bright point (the contrast is reversed in this figure) in the sixteen small squares indicates the number of the node. (b) Output array obtained in the system shown in Fig. 1. The sixteen receiver nodes are placed in the 5 × 5 matrix in the same way as in (a). Each node receives the signals from four input nodes. The positions of the four bright squares in the node indicate the numbers of the input nodes from which the signals come.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

tan θ = D + L 2 F .
N M = [ D L λ F ] 2

Metrics