Abstract

This paper presents a study of board-level interconnection requirements for highly parallel and massively parallel computing. Analytical models of the I/O bandwidth of popular interconnection networks have been developed and show that current electronic technologies are poor in supporting the necessary I/O density and bandwidth. Optical interconnects appear to offer greater potential in meeting these I/O requirements. Several possible optical implementations of interconnecting a network of electronic processors are compared. The use of polymer waveguides appears to offer the best solution compatible with existing multiboard system architectures.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. D. Hillis, The Connection Machine (MIT Press, Cambridge, 1985).
  2. J. F. Palmer, “The NCUBE Family of Parallel Supercomputers,” in Proceedings, IEEE International Conference on Computer Design (1986).
  3. A. Guha, M. W. Derstine, “Design and Analysis of the SPARO Optical Computing Architecture,” submitted to Appl. Opt., in press.
  4. “Million-Transitor Microchip,” IEEE Spectrum22–28 (April1989).
  5. K. Hwang, F. A. Briggs, Computer Architecture and Parallel Processing (McGraw-Hill, New York, 1984).
  6. C. P. Kruskal, M. Snir, “The Importance of Being Square,” in Proceedings, Eleventh International Symposium on Computer Architecture (1984), pp. 91–98.
    [CrossRef]
  7. D. H. Lawrie, D. A. Padua, “Analysis of Message Switching with Shuffle Exchanges in Multiprocessors,” in Proceedings, Workshop on Interconnection Networks for Parallel and Distributed Processing (IEEE, New York, 1980), p. 116.
  8. R. Smolley, “Button Board: a New Technology Interconnect for 2 and 3 Dimensional Packaging,” in Proceedings, International Symposium on Microelectronics (1985), pp. 326–333.
  9. “Button Contact Interconnects Eliminate Backplanes,” Electron. Prod. 16 (Apr.1989).
  10. R. G. Smith, S. D. Personick, “Receiver Design for Optical Fiber Communication Systems,” in Semiconductor Devices for Optical Communications, reviewed in Appl. Opt., H. Kressel, Ed. (Springer-Verlag, Berlin, 1980).
    [CrossRef]
  11. M. Feldman, S. Esener, C. Guest, S. Lee, “Comparison Between Optical and Electrical Interconnects Based on Power and Speed Considerations,” Appl. Opt. 27, 1742–1751 (1988).
    [CrossRef] [PubMed]
  12. D. Hartman, “Digital High Speed Interconnects: a Study of the Optical Alternative,” Opt. Eng. 25, 1086–1102 (1986).
    [CrossRef]
  13. J. K. Butler, Semiconductor Injection Lasers (IEEE, NewYork, 1979).
  14. U. Efron, “Spatial Light Modulators for Optical Information Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 700, 132–145 (1986).
  15. R. G. Walker, “Broadband (6 GHz) GaAs/AlGaAs Electro-Optic Modulator with Low Drive Power,” Appl. Phys. Lett. 54, 1613–1615 (1989).
    [CrossRef]
  16. S. Wang, S. Lin, “High-Speed III-V Electrooptic Waveguide Modulators at L = 1.3 mm,” IEEE/OSA J. Lightwave Technol. LT-6, 758–771 (1988).
    [CrossRef]
  17. D. A. B. Miller, “Quantum Well Devices for Optical Computing and Switching,” in Technical Digest, Topical Meeting on Optical Computing (Optical Society of America, Washington, DC, 1989), pp. 413–415.
  18. S. Siegel, D. Channin, “PIN-FET Receiver for Fiber Optics,” RCA Rev. 45, 3–22 (Mar.1984).
  19. G. Vella-Coliero, “Optimization of the Optical Sensitivity of p-i-n FET Receivers,” IEEE Electron Device Lett. EDL-9, 269–271 (1988).
    [CrossRef]
  20. K.-H. Brenner, A. Huang, “Optical Implementations of the Perfect Shuffle Interconnection,” Appl. Opt. 27, 135–137 (1988).
    [CrossRef] [PubMed]
  21. A. W. Lohman, “What Classical Optics Can Do for the Digital Optical Computer,” Appl. Opt. 25, 1543–1549 (1986).
    [CrossRef]
  22. C. W. Stirk, R. A. Athale, M. W. Haney, “Folded Perfect Shuffle Optical Processor,” Appl. Opt. 27, 202–203 (1988).
    [CrossRef] [PubMed]
  23. T. Minemoto, S. Numata, K. Miyamoto, “Optical Parallel Logic Gate Using Light Modulators with the Pockels Effect: Applications to Fundamental Components for Optical Digital Computing,” Appl. Opt. 25, 4046–4052 (1986).
    [CrossRef] [PubMed]
  24. K. Johnson, M. Handschy, L. Pagano-Stauffer, “Optical Computing and Image Processing with Ferroelectric Liquid Crystals,” Opt. Eng. 26, 385–391 (1987).
    [CrossRef]
  25. K. Iga, Y. Kokubun, M. Oikawa, Fundamentals of Microoptics (Academic, New York, 1984).
  26. E. Bradley, P. Yu, “System Issues Relating to Laser Diode Requirements for VLSI Holographic Optical Interconnects,” Opt. Eng. 28, 201–211 (1989).
    [CrossRef]
  27. L. Bergman, W. Wu, A. Johnston, R. Nixon, “Holographic Optical Interconnects for VLSI,” Opt. Eng. 25, 1109–1118 (1986).
    [CrossRef]
  28. A. R. Johnston, L. A. Bergman, W. Wu, “Optical Interconnection Techniques for Hypercube,” Proc. Soc. Photo-Opt. Instrum. Eng. 881, 186–191 (1988).
  29. K. S. Huang et al., “Implementation of a Prototype Digital Optical Cellular Image Processor (DOCIP),” Proc. Soc. Photo-Opt. Instrum. Eng. 963, 687–694, 1988.
  30. J. Jang, S. Shin, S. Lee, “Adaptive Two-Dimensional Quadratic Associative Memory Using Holgraphic Lenslet Arrays,” in Technical Digest, Topical Meeting on Optical Computing (Optical Society of America, Washington, DC, 1989), paper MD3–1.
  31. H. Unger, Planar Optical Waveguides and Fibers (Oxford U. P., London, 1977).
  32. C. T. Sullivan, “Optical Waveguide Circuits for Printed Wire Board Interconnections,” Proc. Soc. Photo-Opt. Instrum. Eng. 994, 92–100 (1988).
  33. C. T. Sullivan, A. Husain, “Guided-Wave Optical Interconnects for VLSI Systems,” Proc. Soc. Photo-Opt. Instrum. Eng. 881, 27–00 (1988).
  34. R. Selvaraj, H. Lin, J. McDonald, “Integrated Optical Waveguides in Polyimide for Wafer-Scale Integration,” IEEE/OSA J. Lightwave Technol. LT-6, 1034–1044 (1988).
    [CrossRef]
  35. C. Harder, B. Zeghbroeck, H. Meier, W. Patrick, P. Zettiger, “5.2 GHz Bandwidth Monolithic GaAs Optoelectronic Receiver,” IEEE Electron Devices Lett. EDL-9, 171–173 (1988).
    [CrossRef]

1989 (4)

“Million-Transitor Microchip,” IEEE Spectrum22–28 (April1989).

“Button Contact Interconnects Eliminate Backplanes,” Electron. Prod. 16 (Apr.1989).

R. G. Walker, “Broadband (6 GHz) GaAs/AlGaAs Electro-Optic Modulator with Low Drive Power,” Appl. Phys. Lett. 54, 1613–1615 (1989).
[CrossRef]

E. Bradley, P. Yu, “System Issues Relating to Laser Diode Requirements for VLSI Holographic Optical Interconnects,” Opt. Eng. 28, 201–211 (1989).
[CrossRef]

1988 (11)

C. W. Stirk, R. A. Athale, M. W. Haney, “Folded Perfect Shuffle Optical Processor,” Appl. Opt. 27, 202–203 (1988).
[CrossRef] [PubMed]

S. Wang, S. Lin, “High-Speed III-V Electrooptic Waveguide Modulators at L = 1.3 mm,” IEEE/OSA J. Lightwave Technol. LT-6, 758–771 (1988).
[CrossRef]

G. Vella-Coliero, “Optimization of the Optical Sensitivity of p-i-n FET Receivers,” IEEE Electron Device Lett. EDL-9, 269–271 (1988).
[CrossRef]

K.-H. Brenner, A. Huang, “Optical Implementations of the Perfect Shuffle Interconnection,” Appl. Opt. 27, 135–137 (1988).
[CrossRef] [PubMed]

M. Feldman, S. Esener, C. Guest, S. Lee, “Comparison Between Optical and Electrical Interconnects Based on Power and Speed Considerations,” Appl. Opt. 27, 1742–1751 (1988).
[CrossRef] [PubMed]

A. R. Johnston, L. A. Bergman, W. Wu, “Optical Interconnection Techniques for Hypercube,” Proc. Soc. Photo-Opt. Instrum. Eng. 881, 186–191 (1988).

K. S. Huang et al., “Implementation of a Prototype Digital Optical Cellular Image Processor (DOCIP),” Proc. Soc. Photo-Opt. Instrum. Eng. 963, 687–694, 1988.

C. T. Sullivan, “Optical Waveguide Circuits for Printed Wire Board Interconnections,” Proc. Soc. Photo-Opt. Instrum. Eng. 994, 92–100 (1988).

C. T. Sullivan, A. Husain, “Guided-Wave Optical Interconnects for VLSI Systems,” Proc. Soc. Photo-Opt. Instrum. Eng. 881, 27–00 (1988).

R. Selvaraj, H. Lin, J. McDonald, “Integrated Optical Waveguides in Polyimide for Wafer-Scale Integration,” IEEE/OSA J. Lightwave Technol. LT-6, 1034–1044 (1988).
[CrossRef]

C. Harder, B. Zeghbroeck, H. Meier, W. Patrick, P. Zettiger, “5.2 GHz Bandwidth Monolithic GaAs Optoelectronic Receiver,” IEEE Electron Devices Lett. EDL-9, 171–173 (1988).
[CrossRef]

1987 (1)

K. Johnson, M. Handschy, L. Pagano-Stauffer, “Optical Computing and Image Processing with Ferroelectric Liquid Crystals,” Opt. Eng. 26, 385–391 (1987).
[CrossRef]

1986 (6)

D. Hartman, “Digital High Speed Interconnects: a Study of the Optical Alternative,” Opt. Eng. 25, 1086–1102 (1986).
[CrossRef]

U. Efron, “Spatial Light Modulators for Optical Information Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 700, 132–145 (1986).

J. F. Palmer, “The NCUBE Family of Parallel Supercomputers,” in Proceedings, IEEE International Conference on Computer Design (1986).

A. W. Lohman, “What Classical Optics Can Do for the Digital Optical Computer,” Appl. Opt. 25, 1543–1549 (1986).
[CrossRef]

T. Minemoto, S. Numata, K. Miyamoto, “Optical Parallel Logic Gate Using Light Modulators with the Pockels Effect: Applications to Fundamental Components for Optical Digital Computing,” Appl. Opt. 25, 4046–4052 (1986).
[CrossRef] [PubMed]

L. Bergman, W. Wu, A. Johnston, R. Nixon, “Holographic Optical Interconnects for VLSI,” Opt. Eng. 25, 1109–1118 (1986).
[CrossRef]

1985 (1)

R. Smolley, “Button Board: a New Technology Interconnect for 2 and 3 Dimensional Packaging,” in Proceedings, International Symposium on Microelectronics (1985), pp. 326–333.

1984 (2)

C. P. Kruskal, M. Snir, “The Importance of Being Square,” in Proceedings, Eleventh International Symposium on Computer Architecture (1984), pp. 91–98.
[CrossRef]

S. Siegel, D. Channin, “PIN-FET Receiver for Fiber Optics,” RCA Rev. 45, 3–22 (Mar.1984).

Athale, R. A.

Bergman, L.

L. Bergman, W. Wu, A. Johnston, R. Nixon, “Holographic Optical Interconnects for VLSI,” Opt. Eng. 25, 1109–1118 (1986).
[CrossRef]

Bergman, L. A.

A. R. Johnston, L. A. Bergman, W. Wu, “Optical Interconnection Techniques for Hypercube,” Proc. Soc. Photo-Opt. Instrum. Eng. 881, 186–191 (1988).

Bradley, E.

E. Bradley, P. Yu, “System Issues Relating to Laser Diode Requirements for VLSI Holographic Optical Interconnects,” Opt. Eng. 28, 201–211 (1989).
[CrossRef]

Brenner, K.-H.

Briggs, F. A.

K. Hwang, F. A. Briggs, Computer Architecture and Parallel Processing (McGraw-Hill, New York, 1984).

Butler, J. K.

J. K. Butler, Semiconductor Injection Lasers (IEEE, NewYork, 1979).

Channin, D.

S. Siegel, D. Channin, “PIN-FET Receiver for Fiber Optics,” RCA Rev. 45, 3–22 (Mar.1984).

Derstine, M. W.

A. Guha, M. W. Derstine, “Design and Analysis of the SPARO Optical Computing Architecture,” submitted to Appl. Opt., in press.

Efron, U.

U. Efron, “Spatial Light Modulators for Optical Information Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 700, 132–145 (1986).

Esener, S.

Feldman, M.

Guest, C.

Guha, A.

A. Guha, M. W. Derstine, “Design and Analysis of the SPARO Optical Computing Architecture,” submitted to Appl. Opt., in press.

Handschy, M.

K. Johnson, M. Handschy, L. Pagano-Stauffer, “Optical Computing and Image Processing with Ferroelectric Liquid Crystals,” Opt. Eng. 26, 385–391 (1987).
[CrossRef]

Haney, M. W.

Harder, C.

C. Harder, B. Zeghbroeck, H. Meier, W. Patrick, P. Zettiger, “5.2 GHz Bandwidth Monolithic GaAs Optoelectronic Receiver,” IEEE Electron Devices Lett. EDL-9, 171–173 (1988).
[CrossRef]

Hartman, D.

D. Hartman, “Digital High Speed Interconnects: a Study of the Optical Alternative,” Opt. Eng. 25, 1086–1102 (1986).
[CrossRef]

Hillis, W. D.

W. D. Hillis, The Connection Machine (MIT Press, Cambridge, 1985).

Huang, A.

Huang, K. S.

K. S. Huang et al., “Implementation of a Prototype Digital Optical Cellular Image Processor (DOCIP),” Proc. Soc. Photo-Opt. Instrum. Eng. 963, 687–694, 1988.

Husain, A.

C. T. Sullivan, A. Husain, “Guided-Wave Optical Interconnects for VLSI Systems,” Proc. Soc. Photo-Opt. Instrum. Eng. 881, 27–00 (1988).

Hwang, K.

K. Hwang, F. A. Briggs, Computer Architecture and Parallel Processing (McGraw-Hill, New York, 1984).

Iga, K.

K. Iga, Y. Kokubun, M. Oikawa, Fundamentals of Microoptics (Academic, New York, 1984).

Jang, J.

J. Jang, S. Shin, S. Lee, “Adaptive Two-Dimensional Quadratic Associative Memory Using Holgraphic Lenslet Arrays,” in Technical Digest, Topical Meeting on Optical Computing (Optical Society of America, Washington, DC, 1989), paper MD3–1.

Johnson, K.

K. Johnson, M. Handschy, L. Pagano-Stauffer, “Optical Computing and Image Processing with Ferroelectric Liquid Crystals,” Opt. Eng. 26, 385–391 (1987).
[CrossRef]

Johnston, A.

L. Bergman, W. Wu, A. Johnston, R. Nixon, “Holographic Optical Interconnects for VLSI,” Opt. Eng. 25, 1109–1118 (1986).
[CrossRef]

Johnston, A. R.

A. R. Johnston, L. A. Bergman, W. Wu, “Optical Interconnection Techniques for Hypercube,” Proc. Soc. Photo-Opt. Instrum. Eng. 881, 186–191 (1988).

Kokubun, Y.

K. Iga, Y. Kokubun, M. Oikawa, Fundamentals of Microoptics (Academic, New York, 1984).

Kruskal, C. P.

C. P. Kruskal, M. Snir, “The Importance of Being Square,” in Proceedings, Eleventh International Symposium on Computer Architecture (1984), pp. 91–98.
[CrossRef]

Lawrie, D. H.

D. H. Lawrie, D. A. Padua, “Analysis of Message Switching with Shuffle Exchanges in Multiprocessors,” in Proceedings, Workshop on Interconnection Networks for Parallel and Distributed Processing (IEEE, New York, 1980), p. 116.

Lee, S.

M. Feldman, S. Esener, C. Guest, S. Lee, “Comparison Between Optical and Electrical Interconnects Based on Power and Speed Considerations,” Appl. Opt. 27, 1742–1751 (1988).
[CrossRef] [PubMed]

J. Jang, S. Shin, S. Lee, “Adaptive Two-Dimensional Quadratic Associative Memory Using Holgraphic Lenslet Arrays,” in Technical Digest, Topical Meeting on Optical Computing (Optical Society of America, Washington, DC, 1989), paper MD3–1.

Lin, H.

R. Selvaraj, H. Lin, J. McDonald, “Integrated Optical Waveguides in Polyimide for Wafer-Scale Integration,” IEEE/OSA J. Lightwave Technol. LT-6, 1034–1044 (1988).
[CrossRef]

Lin, S.

S. Wang, S. Lin, “High-Speed III-V Electrooptic Waveguide Modulators at L = 1.3 mm,” IEEE/OSA J. Lightwave Technol. LT-6, 758–771 (1988).
[CrossRef]

Lohman, A. W.

McDonald, J.

R. Selvaraj, H. Lin, J. McDonald, “Integrated Optical Waveguides in Polyimide for Wafer-Scale Integration,” IEEE/OSA J. Lightwave Technol. LT-6, 1034–1044 (1988).
[CrossRef]

Meier, H.

C. Harder, B. Zeghbroeck, H. Meier, W. Patrick, P. Zettiger, “5.2 GHz Bandwidth Monolithic GaAs Optoelectronic Receiver,” IEEE Electron Devices Lett. EDL-9, 171–173 (1988).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, “Quantum Well Devices for Optical Computing and Switching,” in Technical Digest, Topical Meeting on Optical Computing (Optical Society of America, Washington, DC, 1989), pp. 413–415.

Minemoto, T.

Miyamoto, K.

Nixon, R.

L. Bergman, W. Wu, A. Johnston, R. Nixon, “Holographic Optical Interconnects for VLSI,” Opt. Eng. 25, 1109–1118 (1986).
[CrossRef]

Numata, S.

Oikawa, M.

K. Iga, Y. Kokubun, M. Oikawa, Fundamentals of Microoptics (Academic, New York, 1984).

Padua, D. A.

D. H. Lawrie, D. A. Padua, “Analysis of Message Switching with Shuffle Exchanges in Multiprocessors,” in Proceedings, Workshop on Interconnection Networks for Parallel and Distributed Processing (IEEE, New York, 1980), p. 116.

Pagano-Stauffer, L.

K. Johnson, M. Handschy, L. Pagano-Stauffer, “Optical Computing and Image Processing with Ferroelectric Liquid Crystals,” Opt. Eng. 26, 385–391 (1987).
[CrossRef]

Palmer, J. F.

J. F. Palmer, “The NCUBE Family of Parallel Supercomputers,” in Proceedings, IEEE International Conference on Computer Design (1986).

Patrick, W.

C. Harder, B. Zeghbroeck, H. Meier, W. Patrick, P. Zettiger, “5.2 GHz Bandwidth Monolithic GaAs Optoelectronic Receiver,” IEEE Electron Devices Lett. EDL-9, 171–173 (1988).
[CrossRef]

Personick, S. D.

R. G. Smith, S. D. Personick, “Receiver Design for Optical Fiber Communication Systems,” in Semiconductor Devices for Optical Communications, reviewed in Appl. Opt., H. Kressel, Ed. (Springer-Verlag, Berlin, 1980).
[CrossRef]

Selvaraj, R.

R. Selvaraj, H. Lin, J. McDonald, “Integrated Optical Waveguides in Polyimide for Wafer-Scale Integration,” IEEE/OSA J. Lightwave Technol. LT-6, 1034–1044 (1988).
[CrossRef]

Shin, S.

J. Jang, S. Shin, S. Lee, “Adaptive Two-Dimensional Quadratic Associative Memory Using Holgraphic Lenslet Arrays,” in Technical Digest, Topical Meeting on Optical Computing (Optical Society of America, Washington, DC, 1989), paper MD3–1.

Siegel, S.

S. Siegel, D. Channin, “PIN-FET Receiver for Fiber Optics,” RCA Rev. 45, 3–22 (Mar.1984).

Smith, R. G.

R. G. Smith, S. D. Personick, “Receiver Design for Optical Fiber Communication Systems,” in Semiconductor Devices for Optical Communications, reviewed in Appl. Opt., H. Kressel, Ed. (Springer-Verlag, Berlin, 1980).
[CrossRef]

Smolley, R.

R. Smolley, “Button Board: a New Technology Interconnect for 2 and 3 Dimensional Packaging,” in Proceedings, International Symposium on Microelectronics (1985), pp. 326–333.

Snir, M.

C. P. Kruskal, M. Snir, “The Importance of Being Square,” in Proceedings, Eleventh International Symposium on Computer Architecture (1984), pp. 91–98.
[CrossRef]

Stirk, C. W.

Sullivan, C. T.

C. T. Sullivan, “Optical Waveguide Circuits for Printed Wire Board Interconnections,” Proc. Soc. Photo-Opt. Instrum. Eng. 994, 92–100 (1988).

C. T. Sullivan, A. Husain, “Guided-Wave Optical Interconnects for VLSI Systems,” Proc. Soc. Photo-Opt. Instrum. Eng. 881, 27–00 (1988).

Unger, H.

H. Unger, Planar Optical Waveguides and Fibers (Oxford U. P., London, 1977).

Vella-Coliero, G.

G. Vella-Coliero, “Optimization of the Optical Sensitivity of p-i-n FET Receivers,” IEEE Electron Device Lett. EDL-9, 269–271 (1988).
[CrossRef]

Walker, R. G.

R. G. Walker, “Broadband (6 GHz) GaAs/AlGaAs Electro-Optic Modulator with Low Drive Power,” Appl. Phys. Lett. 54, 1613–1615 (1989).
[CrossRef]

Wang, S.

S. Wang, S. Lin, “High-Speed III-V Electrooptic Waveguide Modulators at L = 1.3 mm,” IEEE/OSA J. Lightwave Technol. LT-6, 758–771 (1988).
[CrossRef]

Wu, W.

A. R. Johnston, L. A. Bergman, W. Wu, “Optical Interconnection Techniques for Hypercube,” Proc. Soc. Photo-Opt. Instrum. Eng. 881, 186–191 (1988).

L. Bergman, W. Wu, A. Johnston, R. Nixon, “Holographic Optical Interconnects for VLSI,” Opt. Eng. 25, 1109–1118 (1986).
[CrossRef]

Yu, P.

E. Bradley, P. Yu, “System Issues Relating to Laser Diode Requirements for VLSI Holographic Optical Interconnects,” Opt. Eng. 28, 201–211 (1989).
[CrossRef]

Zeghbroeck, B.

C. Harder, B. Zeghbroeck, H. Meier, W. Patrick, P. Zettiger, “5.2 GHz Bandwidth Monolithic GaAs Optoelectronic Receiver,” IEEE Electron Devices Lett. EDL-9, 171–173 (1988).
[CrossRef]

Zettiger, P.

C. Harder, B. Zeghbroeck, H. Meier, W. Patrick, P. Zettiger, “5.2 GHz Bandwidth Monolithic GaAs Optoelectronic Receiver,” IEEE Electron Devices Lett. EDL-9, 171–173 (1988).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. Lett. (1)

R. G. Walker, “Broadband (6 GHz) GaAs/AlGaAs Electro-Optic Modulator with Low Drive Power,” Appl. Phys. Lett. 54, 1613–1615 (1989).
[CrossRef]

Electron. Prod. (1)

“Button Contact Interconnects Eliminate Backplanes,” Electron. Prod. 16 (Apr.1989).

IEEE Electron Device Lett. (1)

G. Vella-Coliero, “Optimization of the Optical Sensitivity of p-i-n FET Receivers,” IEEE Electron Device Lett. EDL-9, 269–271 (1988).
[CrossRef]

IEEE Electron Devices Lett. (1)

C. Harder, B. Zeghbroeck, H. Meier, W. Patrick, P. Zettiger, “5.2 GHz Bandwidth Monolithic GaAs Optoelectronic Receiver,” IEEE Electron Devices Lett. EDL-9, 171–173 (1988).
[CrossRef]

IEEE Spectrum (1)

“Million-Transitor Microchip,” IEEE Spectrum22–28 (April1989).

IEEE/OSA J. Lightwave Technol. (2)

S. Wang, S. Lin, “High-Speed III-V Electrooptic Waveguide Modulators at L = 1.3 mm,” IEEE/OSA J. Lightwave Technol. LT-6, 758–771 (1988).
[CrossRef]

R. Selvaraj, H. Lin, J. McDonald, “Integrated Optical Waveguides in Polyimide for Wafer-Scale Integration,” IEEE/OSA J. Lightwave Technol. LT-6, 1034–1044 (1988).
[CrossRef]

Opt. Eng. (4)

K. Johnson, M. Handschy, L. Pagano-Stauffer, “Optical Computing and Image Processing with Ferroelectric Liquid Crystals,” Opt. Eng. 26, 385–391 (1987).
[CrossRef]

E. Bradley, P. Yu, “System Issues Relating to Laser Diode Requirements for VLSI Holographic Optical Interconnects,” Opt. Eng. 28, 201–211 (1989).
[CrossRef]

L. Bergman, W. Wu, A. Johnston, R. Nixon, “Holographic Optical Interconnects for VLSI,” Opt. Eng. 25, 1109–1118 (1986).
[CrossRef]

D. Hartman, “Digital High Speed Interconnects: a Study of the Optical Alternative,” Opt. Eng. 25, 1086–1102 (1986).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (5)

U. Efron, “Spatial Light Modulators for Optical Information Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 700, 132–145 (1986).

A. R. Johnston, L. A. Bergman, W. Wu, “Optical Interconnection Techniques for Hypercube,” Proc. Soc. Photo-Opt. Instrum. Eng. 881, 186–191 (1988).

K. S. Huang et al., “Implementation of a Prototype Digital Optical Cellular Image Processor (DOCIP),” Proc. Soc. Photo-Opt. Instrum. Eng. 963, 687–694, 1988.

C. T. Sullivan, “Optical Waveguide Circuits for Printed Wire Board Interconnections,” Proc. Soc. Photo-Opt. Instrum. Eng. 994, 92–100 (1988).

C. T. Sullivan, A. Husain, “Guided-Wave Optical Interconnects for VLSI Systems,” Proc. Soc. Photo-Opt. Instrum. Eng. 881, 27–00 (1988).

Proceedings, Eleventh International Symposium on Computer Architecture (1)

C. P. Kruskal, M. Snir, “The Importance of Being Square,” in Proceedings, Eleventh International Symposium on Computer Architecture (1984), pp. 91–98.
[CrossRef]

Proceedings, IEEE International Conference on Computer Design (1)

J. F. Palmer, “The NCUBE Family of Parallel Supercomputers,” in Proceedings, IEEE International Conference on Computer Design (1986).

Proceedings, International Symposium on Microelectronics (1)

R. Smolley, “Button Board: a New Technology Interconnect for 2 and 3 Dimensional Packaging,” in Proceedings, International Symposium on Microelectronics (1985), pp. 326–333.

RCA Rev. (1)

S. Siegel, D. Channin, “PIN-FET Receiver for Fiber Optics,” RCA Rev. 45, 3–22 (Mar.1984).

Other (10)

D. A. B. Miller, “Quantum Well Devices for Optical Computing and Switching,” in Technical Digest, Topical Meeting on Optical Computing (Optical Society of America, Washington, DC, 1989), pp. 413–415.

J. K. Butler, Semiconductor Injection Lasers (IEEE, NewYork, 1979).

R. G. Smith, S. D. Personick, “Receiver Design for Optical Fiber Communication Systems,” in Semiconductor Devices for Optical Communications, reviewed in Appl. Opt., H. Kressel, Ed. (Springer-Verlag, Berlin, 1980).
[CrossRef]

W. D. Hillis, The Connection Machine (MIT Press, Cambridge, 1985).

D. H. Lawrie, D. A. Padua, “Analysis of Message Switching with Shuffle Exchanges in Multiprocessors,” in Proceedings, Workshop on Interconnection Networks for Parallel and Distributed Processing (IEEE, New York, 1980), p. 116.

A. Guha, M. W. Derstine, “Design and Analysis of the SPARO Optical Computing Architecture,” submitted to Appl. Opt., in press.

K. Hwang, F. A. Briggs, Computer Architecture and Parallel Processing (McGraw-Hill, New York, 1984).

J. Jang, S. Shin, S. Lee, “Adaptive Two-Dimensional Quadratic Associative Memory Using Holgraphic Lenslet Arrays,” in Technical Digest, Topical Meeting on Optical Computing (Optical Society of America, Washington, DC, 1989), paper MD3–1.

H. Unger, Planar Optical Waveguides and Fibers (Oxford U. P., London, 1977).

K. Iga, Y. Kokubun, M. Oikawa, Fundamentals of Microoptics (Academic, New York, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Hypercube connecting sixteen PEs.

Fig. 2
Fig. 2

Crossbar connection.

Fig. 3
Fig. 3

Shuffle exchange network for connecting eight PEs.

Fig. 4
Fig. 4

Board-level I/O as a function of the number of boards (B = 32, N = 16).

Fig. 5
Fig. 5

Broad-level I/O as a function of the number of PEs/board (B = 10, M = 2).

Fig. 6
Fig. 6

Board-level I/O as a function of the number of PEs/board (B = 100, M = 16).

Fig. 7
Fig. 7

Topological layout for the shuffle connection on the backplane (P = N/M).

Fig. 8
Fig. 8

Board-level I/O as a function of the number of boards and interconnect technology capabilities (B = 32, N = 16).

Fig. 9
Fig. 9

Board-level I/O as a function of the number of PEs/board and interconnect technology capabilities (B = 10, M = 2).

Fig. 10
Fig. 10

Board-level I/O as a function of the number of PEs/board and interconnect technology capabilities (B = 100, M = 16).

Fig. 11
Fig. 11

Voltage distributions associated with binary reception.

Fig. 12
Fig. 12

Shuffle backplane connectivity for sixteen PEs on four boards.

Fig. 13
Fig. 13

45° bends and 90° crossthroughs in polyimide waveguides.

Fig. 14
Fig. 14

Honeywell’s 128 linear perfect shuffle is shown operating in this photomicrograph.

Fig. 15
Fig. 15

Possible waveguide-based scheme for interconnecting a large number of electronic processors in a multiboard system.

Fig. 16
Fig. 16

Multiple waveguide array board-to-backplane connector (single level polyimide implementation shown).

Fig. 17
Fig. 17

Possible free-space connection scheme for a large number of processing elements in a multiboard system.

Tables (1)

Tables Icon

Table I Interboard I/O Requirements for Different Interconnection Networks Assuming Parallel Message Transfer

Metrics