Abstract

A new instrument, the Probe Infrared Laser Spectrometer (PIRLS), is described for in situ sensing of the gas composition and particle size distribution of Titan’s atmosphere on the NASA/ESA Saturn Orbiter/Titan Probe Cassini Mission. For gas composition measurements, several narrow bandwidth (0.0001 cm−1) tunable lead-salt diode lasers operating near 80 K at selected, mid-IR wavelengths (3–16 μm) are directed over a pathlength defined by a small reflector extending over the edge of the probe spacecraft platform; volume mixing ratios of 10−9 should be measurable for several species of interest. A cloud particle size spectrometer using a diode laser source at 0.78 μm shares the optical path and deployed reflector; a combination of imaging and light scattering techniques will be used to determine sizes of haze and cloud particles and their number density as a function of altitude.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. “Cassini—Saturn Orbiter and Titan Probe,” ESA/NASA Assessment Study, ESA Ref: SCI(85)1 (Aug.1985).
  2. “Report on the Phase A Study,” ESA/NASA Study, ESA Ref: SCI(88)5 (Oct.1988).
  3. D. M. Hunten, M. G. Tomasko, F. M. Flasar, R. E. Samuelson, D. F. Stroben, D. J. Stevenson, “Titan,” in Saturn, Gehrels, Matthews, Eds. (U. of Arizona Press, Tucson, 1984).
  4. T. Owen, “Titan,” in “The Planets:” Readings from Scientific AmericanW. H. Freeman, San Francisco, 1983).
  5. Y. L. Yung, M. Allen, J. P. Pinto, “Photochemistry of the Atmosphere of Titan: Comparison between Model and Observations,” Astrophys. J. Suppl. Ser. 55, 465–506 (1984).
    [CrossRef] [PubMed]
  6. C. R. Webster, “Stratospheric Composition Measurements of Earth and Titan,” J. Quant. Spectros. Radiat. Transfer 40, 239–248 (1988).
    [CrossRef]
  7. D. L. Partin, “Preparation and Applications of Lead Chalcogenide Lasers,” Mater. Res. Soc. Symp. Proc. 90, 47–58 (1987).
    [CrossRef]
  8. C. R. Webster, R. T. Menzies, E. D. Hinkley, “Infrared Absorption: Theory and Meaurements,” in Laser Remote Chemical Analysis, R. M. Measures, Ed. (Wiley, New York, 1988).
  9. J. Reid, M. El-Sherbiny, B. K. Garside, E. A. Ballik, “Sensitivity Limits of a Tunable Diode Laser Spectrometer, with Application to the Detection of NO2 at the 100-ppt Level,” Appl. Opt. 19, 3349–3354 (1980).
    [CrossRef] [PubMed]
  10. M. Loewenstein, “Diode Laser Harmonic Spectroscopy Applied to In-Situ Measurements of Atmospheric Trace Molecules,” J. Quant. Spectros. Radiat. Transfer 40, 249–256 (1988).
    [CrossRef]
  11. R. G. Knollenberg, J. R. Gilland, “Pioneer Venus Sounder Probe Particle Size Spectrometer,” IEEE Trans. Geosci. Remote Sensing GE-18, 100–104 (1980).
    [CrossRef]
  12. R. G. Knollenberg, D. M. Hunten, “The Microphysics of the Clouds of Venus: Results of the Pioneer Venus Particle Size Spectrometer Experiment,” J. Geophys. Res. 85, 8039–8058 (1980).
    [CrossRef]
  13. C. R. Webster, R. D. May, “Simultaneous In-Situ Measurements and Diurnal Variations of NO, NO2, O3, jNO2, CH4, H2O, and CO2 in the 40–26 Km Region using an Open Path Tunable Diode Laser Spectrometer,” J. Geophys. Res. 92, 11931–11950 (1987).
    [CrossRef]
  14. C. R. Webster, R. D. May, R. Toumi, J. A. Pyle, “Odd-nitrogen Partitioning and the Nighttime Formation of N2O5 in the Stratosphere: Simultaneous In-situ Measurements of NO, NO2, HNO3, O3, N2O, and jNO2 using the BLISS Diode Laser Spectrometer,” submitted to J. Geophys. Res., Oct.1989.
  15. R. D. May, C. R. Webster, “In-Situ Stratospheric Measurements of HNO3 and HCl near 30 km using the BLISS Tunable Diode Laser Spectrometer,” J. Geophys. Res., 94, 16343–16350, (1989).
    [CrossRef]
  16. R. D. May, “Computer Processing of Tunable Diode Laser Spectra,” Appl. Spectros. 43, 834–839 (1989).
    [CrossRef]
  17. D. R. Herriott, H. Kogelnick, R. Kompfner, “Off-Axis Paths in Spherical Mirror Interferometers,” Appl. Opt. 3, 523–526 (1964).
    [CrossRef]
  18. J. Altman, R. Baumgart, C. Weitkamp, “Two-Mirror Multipass Absorption Cell,” Appl. Opt. 20, 995–999 (1981).
    [CrossRef]

1989 (2)

R. D. May, C. R. Webster, “In-Situ Stratospheric Measurements of HNO3 and HCl near 30 km using the BLISS Tunable Diode Laser Spectrometer,” J. Geophys. Res., 94, 16343–16350, (1989).
[CrossRef]

R. D. May, “Computer Processing of Tunable Diode Laser Spectra,” Appl. Spectros. 43, 834–839 (1989).
[CrossRef]

1988 (3)

M. Loewenstein, “Diode Laser Harmonic Spectroscopy Applied to In-Situ Measurements of Atmospheric Trace Molecules,” J. Quant. Spectros. Radiat. Transfer 40, 249–256 (1988).
[CrossRef]

“Report on the Phase A Study,” ESA/NASA Study, ESA Ref: SCI(88)5 (Oct.1988).

C. R. Webster, “Stratospheric Composition Measurements of Earth and Titan,” J. Quant. Spectros. Radiat. Transfer 40, 239–248 (1988).
[CrossRef]

1987 (2)

D. L. Partin, “Preparation and Applications of Lead Chalcogenide Lasers,” Mater. Res. Soc. Symp. Proc. 90, 47–58 (1987).
[CrossRef]

C. R. Webster, R. D. May, “Simultaneous In-Situ Measurements and Diurnal Variations of NO, NO2, O3, jNO2, CH4, H2O, and CO2 in the 40–26 Km Region using an Open Path Tunable Diode Laser Spectrometer,” J. Geophys. Res. 92, 11931–11950 (1987).
[CrossRef]

1985 (1)

“Cassini—Saturn Orbiter and Titan Probe,” ESA/NASA Assessment Study, ESA Ref: SCI(85)1 (Aug.1985).

1984 (1)

Y. L. Yung, M. Allen, J. P. Pinto, “Photochemistry of the Atmosphere of Titan: Comparison between Model and Observations,” Astrophys. J. Suppl. Ser. 55, 465–506 (1984).
[CrossRef] [PubMed]

1981 (1)

1980 (3)

J. Reid, M. El-Sherbiny, B. K. Garside, E. A. Ballik, “Sensitivity Limits of a Tunable Diode Laser Spectrometer, with Application to the Detection of NO2 at the 100-ppt Level,” Appl. Opt. 19, 3349–3354 (1980).
[CrossRef] [PubMed]

R. G. Knollenberg, J. R. Gilland, “Pioneer Venus Sounder Probe Particle Size Spectrometer,” IEEE Trans. Geosci. Remote Sensing GE-18, 100–104 (1980).
[CrossRef]

R. G. Knollenberg, D. M. Hunten, “The Microphysics of the Clouds of Venus: Results of the Pioneer Venus Particle Size Spectrometer Experiment,” J. Geophys. Res. 85, 8039–8058 (1980).
[CrossRef]

1964 (1)

Allen, M.

Y. L. Yung, M. Allen, J. P. Pinto, “Photochemistry of the Atmosphere of Titan: Comparison between Model and Observations,” Astrophys. J. Suppl. Ser. 55, 465–506 (1984).
[CrossRef] [PubMed]

Altman, J.

Ballik, E. A.

Baumgart, R.

El-Sherbiny, M.

Flasar, F. M.

D. M. Hunten, M. G. Tomasko, F. M. Flasar, R. E. Samuelson, D. F. Stroben, D. J. Stevenson, “Titan,” in Saturn, Gehrels, Matthews, Eds. (U. of Arizona Press, Tucson, 1984).

Garside, B. K.

Gilland, J. R.

R. G. Knollenberg, J. R. Gilland, “Pioneer Venus Sounder Probe Particle Size Spectrometer,” IEEE Trans. Geosci. Remote Sensing GE-18, 100–104 (1980).
[CrossRef]

Herriott, D. R.

Hinkley, E. D.

C. R. Webster, R. T. Menzies, E. D. Hinkley, “Infrared Absorption: Theory and Meaurements,” in Laser Remote Chemical Analysis, R. M. Measures, Ed. (Wiley, New York, 1988).

Hunten, D. M.

R. G. Knollenberg, D. M. Hunten, “The Microphysics of the Clouds of Venus: Results of the Pioneer Venus Particle Size Spectrometer Experiment,” J. Geophys. Res. 85, 8039–8058 (1980).
[CrossRef]

D. M. Hunten, M. G. Tomasko, F. M. Flasar, R. E. Samuelson, D. F. Stroben, D. J. Stevenson, “Titan,” in Saturn, Gehrels, Matthews, Eds. (U. of Arizona Press, Tucson, 1984).

Knollenberg, R. G.

R. G. Knollenberg, D. M. Hunten, “The Microphysics of the Clouds of Venus: Results of the Pioneer Venus Particle Size Spectrometer Experiment,” J. Geophys. Res. 85, 8039–8058 (1980).
[CrossRef]

R. G. Knollenberg, J. R. Gilland, “Pioneer Venus Sounder Probe Particle Size Spectrometer,” IEEE Trans. Geosci. Remote Sensing GE-18, 100–104 (1980).
[CrossRef]

Kogelnick, H.

Kompfner, R.

Loewenstein, M.

M. Loewenstein, “Diode Laser Harmonic Spectroscopy Applied to In-Situ Measurements of Atmospheric Trace Molecules,” J. Quant. Spectros. Radiat. Transfer 40, 249–256 (1988).
[CrossRef]

May, R. D.

R. D. May, C. R. Webster, “In-Situ Stratospheric Measurements of HNO3 and HCl near 30 km using the BLISS Tunable Diode Laser Spectrometer,” J. Geophys. Res., 94, 16343–16350, (1989).
[CrossRef]

R. D. May, “Computer Processing of Tunable Diode Laser Spectra,” Appl. Spectros. 43, 834–839 (1989).
[CrossRef]

C. R. Webster, R. D. May, “Simultaneous In-Situ Measurements and Diurnal Variations of NO, NO2, O3, jNO2, CH4, H2O, and CO2 in the 40–26 Km Region using an Open Path Tunable Diode Laser Spectrometer,” J. Geophys. Res. 92, 11931–11950 (1987).
[CrossRef]

C. R. Webster, R. D. May, R. Toumi, J. A. Pyle, “Odd-nitrogen Partitioning and the Nighttime Formation of N2O5 in the Stratosphere: Simultaneous In-situ Measurements of NO, NO2, HNO3, O3, N2O, and jNO2 using the BLISS Diode Laser Spectrometer,” submitted to J. Geophys. Res., Oct.1989.

Menzies, R. T.

C. R. Webster, R. T. Menzies, E. D. Hinkley, “Infrared Absorption: Theory and Meaurements,” in Laser Remote Chemical Analysis, R. M. Measures, Ed. (Wiley, New York, 1988).

Owen, T.

T. Owen, “Titan,” in “The Planets:” Readings from Scientific AmericanW. H. Freeman, San Francisco, 1983).

Partin, D. L.

D. L. Partin, “Preparation and Applications of Lead Chalcogenide Lasers,” Mater. Res. Soc. Symp. Proc. 90, 47–58 (1987).
[CrossRef]

Pinto, J. P.

Y. L. Yung, M. Allen, J. P. Pinto, “Photochemistry of the Atmosphere of Titan: Comparison between Model and Observations,” Astrophys. J. Suppl. Ser. 55, 465–506 (1984).
[CrossRef] [PubMed]

Pyle, J. A.

C. R. Webster, R. D. May, R. Toumi, J. A. Pyle, “Odd-nitrogen Partitioning and the Nighttime Formation of N2O5 in the Stratosphere: Simultaneous In-situ Measurements of NO, NO2, HNO3, O3, N2O, and jNO2 using the BLISS Diode Laser Spectrometer,” submitted to J. Geophys. Res., Oct.1989.

Reid, J.

Samuelson, R. E.

D. M. Hunten, M. G. Tomasko, F. M. Flasar, R. E. Samuelson, D. F. Stroben, D. J. Stevenson, “Titan,” in Saturn, Gehrels, Matthews, Eds. (U. of Arizona Press, Tucson, 1984).

Stevenson, D. J.

D. M. Hunten, M. G. Tomasko, F. M. Flasar, R. E. Samuelson, D. F. Stroben, D. J. Stevenson, “Titan,” in Saturn, Gehrels, Matthews, Eds. (U. of Arizona Press, Tucson, 1984).

Stroben, D. F.

D. M. Hunten, M. G. Tomasko, F. M. Flasar, R. E. Samuelson, D. F. Stroben, D. J. Stevenson, “Titan,” in Saturn, Gehrels, Matthews, Eds. (U. of Arizona Press, Tucson, 1984).

Tomasko, M. G.

D. M. Hunten, M. G. Tomasko, F. M. Flasar, R. E. Samuelson, D. F. Stroben, D. J. Stevenson, “Titan,” in Saturn, Gehrels, Matthews, Eds. (U. of Arizona Press, Tucson, 1984).

Toumi, R.

C. R. Webster, R. D. May, R. Toumi, J. A. Pyle, “Odd-nitrogen Partitioning and the Nighttime Formation of N2O5 in the Stratosphere: Simultaneous In-situ Measurements of NO, NO2, HNO3, O3, N2O, and jNO2 using the BLISS Diode Laser Spectrometer,” submitted to J. Geophys. Res., Oct.1989.

Webster, C. R.

R. D. May, C. R. Webster, “In-Situ Stratospheric Measurements of HNO3 and HCl near 30 km using the BLISS Tunable Diode Laser Spectrometer,” J. Geophys. Res., 94, 16343–16350, (1989).
[CrossRef]

C. R. Webster, “Stratospheric Composition Measurements of Earth and Titan,” J. Quant. Spectros. Radiat. Transfer 40, 239–248 (1988).
[CrossRef]

C. R. Webster, R. D. May, “Simultaneous In-Situ Measurements and Diurnal Variations of NO, NO2, O3, jNO2, CH4, H2O, and CO2 in the 40–26 Km Region using an Open Path Tunable Diode Laser Spectrometer,” J. Geophys. Res. 92, 11931–11950 (1987).
[CrossRef]

C. R. Webster, R. D. May, R. Toumi, J. A. Pyle, “Odd-nitrogen Partitioning and the Nighttime Formation of N2O5 in the Stratosphere: Simultaneous In-situ Measurements of NO, NO2, HNO3, O3, N2O, and jNO2 using the BLISS Diode Laser Spectrometer,” submitted to J. Geophys. Res., Oct.1989.

C. R. Webster, R. T. Menzies, E. D. Hinkley, “Infrared Absorption: Theory and Meaurements,” in Laser Remote Chemical Analysis, R. M. Measures, Ed. (Wiley, New York, 1988).

Weitkamp, C.

Yung, Y. L.

Y. L. Yung, M. Allen, J. P. Pinto, “Photochemistry of the Atmosphere of Titan: Comparison between Model and Observations,” Astrophys. J. Suppl. Ser. 55, 465–506 (1984).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Spectros. (1)

R. D. May, “Computer Processing of Tunable Diode Laser Spectra,” Appl. Spectros. 43, 834–839 (1989).
[CrossRef]

Astrophys. J. Suppl. Ser. (1)

Y. L. Yung, M. Allen, J. P. Pinto, “Photochemistry of the Atmosphere of Titan: Comparison between Model and Observations,” Astrophys. J. Suppl. Ser. 55, 465–506 (1984).
[CrossRef] [PubMed]

ESA/NASA Assessment Study, ESA Ref: SCI(85)1 (1)

“Cassini—Saturn Orbiter and Titan Probe,” ESA/NASA Assessment Study, ESA Ref: SCI(85)1 (Aug.1985).

ESA/NASA Study, ESA Ref: SCI(88)5 (1)

“Report on the Phase A Study,” ESA/NASA Study, ESA Ref: SCI(88)5 (Oct.1988).

IEEE Trans. Geosci. Remote Sensing (1)

R. G. Knollenberg, J. R. Gilland, “Pioneer Venus Sounder Probe Particle Size Spectrometer,” IEEE Trans. Geosci. Remote Sensing GE-18, 100–104 (1980).
[CrossRef]

J. Geophys. Res. (3)

R. G. Knollenberg, D. M. Hunten, “The Microphysics of the Clouds of Venus: Results of the Pioneer Venus Particle Size Spectrometer Experiment,” J. Geophys. Res. 85, 8039–8058 (1980).
[CrossRef]

C. R. Webster, R. D. May, “Simultaneous In-Situ Measurements and Diurnal Variations of NO, NO2, O3, jNO2, CH4, H2O, and CO2 in the 40–26 Km Region using an Open Path Tunable Diode Laser Spectrometer,” J. Geophys. Res. 92, 11931–11950 (1987).
[CrossRef]

R. D. May, C. R. Webster, “In-Situ Stratospheric Measurements of HNO3 and HCl near 30 km using the BLISS Tunable Diode Laser Spectrometer,” J. Geophys. Res., 94, 16343–16350, (1989).
[CrossRef]

J. Quant. Spectros. Radiat. Transfer (2)

M. Loewenstein, “Diode Laser Harmonic Spectroscopy Applied to In-Situ Measurements of Atmospheric Trace Molecules,” J. Quant. Spectros. Radiat. Transfer 40, 249–256 (1988).
[CrossRef]

C. R. Webster, “Stratospheric Composition Measurements of Earth and Titan,” J. Quant. Spectros. Radiat. Transfer 40, 239–248 (1988).
[CrossRef]

Mater. Res. Soc. Symp. Proc. (1)

D. L. Partin, “Preparation and Applications of Lead Chalcogenide Lasers,” Mater. Res. Soc. Symp. Proc. 90, 47–58 (1987).
[CrossRef]

Other (4)

C. R. Webster, R. T. Menzies, E. D. Hinkley, “Infrared Absorption: Theory and Meaurements,” in Laser Remote Chemical Analysis, R. M. Measures, Ed. (Wiley, New York, 1988).

D. M. Hunten, M. G. Tomasko, F. M. Flasar, R. E. Samuelson, D. F. Stroben, D. J. Stevenson, “Titan,” in Saturn, Gehrels, Matthews, Eds. (U. of Arizona Press, Tucson, 1984).

T. Owen, “Titan,” in “The Planets:” Readings from Scientific AmericanW. H. Freeman, San Francisco, 1983).

C. R. Webster, R. D. May, R. Toumi, J. A. Pyle, “Odd-nitrogen Partitioning and the Nighttime Formation of N2O5 in the Stratosphere: Simultaneous In-situ Measurements of NO, NO2, HNO3, O3, N2O, and jNO2 using the BLISS Diode Laser Spectrometer,” submitted to J. Geophys. Res., Oct.1989.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

One-dimensional photochemical model calculations of the gas-phase composition of Titan’s atmosphere, prepared from Yung et al., Ref. 5.

Fig. 2
Fig. 2

Low-resolution IR band spectra of constituents of Titan’s atmosphere. Adapted from Stadtler tables.

Fig. 3
Fig. 3

Diode laser materials and absorption wavelengths of candidate species of Titan’s atmosphere. The Pb1−xEuxSeyTe1−y devices are identified for use in the PIRLS experiment.

Fig. 4
Fig. 4

Experimental data collected from the Balloon-borne Laser In-Situ Sensor (BLISS) flight of Sept. 1988. The upper trace shows NO2 spectral features recorded using second harmonic spectroscopic detection at 30 km in the terrestrial stratosphere over Palestine, Texas (321N). The lower trace shows a plot of the measured NO2 concentration as a function of time, the nighttime decay into N2O5 clearly evident.

Fig. 5
Fig. 5

Optical configuration of the 20-cm, ten-pass Herriott cell, showing the predicted beam footprints.

Fig. 6
Fig. 6

Synthetic scans at three altitudes for the spectral region near 4.7 μm which will be used for measurements of the most abundant isotopes of CO.

Fig. 7
Fig. 7

Schematic of the full optical configuration of the PIRLS instrument, including both the gas composition and particle size spectrometers.

Fig. 8
Fig. 8

Computed scattering cross-sections for 5–20° as a function of real refractive index. Computations are shown for a wavelength of 780 nm.

Tables (3)

Tables Icon

Table I Atmospheric Composition of Titan Below 0.1 mbara

Tables Icon

Table II PIRLS Instrument Sensitivitya

Tables Icon

Table III Candidate Spectral Regions for PIRLS TDL Channels

Metrics