Abstract

We can select narrow FSR fringes in a multipass cell of the type described by Herriott et al. by setting the mirror spacing to give a particular type of beam path: M = odd integer, N = 4M ± 4.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Herriott, H. Kogelnik, R. Kompfner, “Off-Axis Paths in Spherical Mirror Interferometers,” Appl. Opt. 3, 523–526 (1964).
    [CrossRef]
  2. J. U. White, “Long Optical Paths of Large Aperture,” J. Opt. Soc. Am. 32, 285–288 (1942).
    [CrossRef]
  3. J. U. White, “Very Long Optical Paths in Air,” J. Opt. Soc. Am. 66, 411–416 (1976).
    [CrossRef]
  4. J. A. Silver, A. C. Stanton, “Optical Interference Fringe Reduction in Laser Absorption Experiments,” Appl. Opt. 27, 1914–1916 (1988).
    [CrossRef] [PubMed]
  5. C. R. Webster, “Brewster-Plate Spoiler: a Novel Method for Reducing the Amplitude of Interference Fringes that Limit Tunable-Laser Absorption Sensitivities,” J. Opt. Soc. Am. B 2, 1464–1470 (1985).
    [CrossRef]
  6. J. Reid, M. El-Sherbiny, B. K. Garside, E. A. Ballik, “Sensitivity Limits of a Tunable Diode Laser Spectrometer, with Application to the Detection of NO2 at the 100-ppt Level,” Appl. Opt. 19, 3349–3354 (1980).
    [CrossRef] [PubMed]
  7. D. T. Cassidy, J. Reid, “Harmonic Detection with Tunable Diode Lasers—Two Tone Modulation,” Appl. Phys. B 29, 279–285 (1982).
    [CrossRef]
  8. D. R. Herriott, H. J. Schulte, “Folded Optical Delay Lines,” Appl. Opt. 4, 883–889 (1965).
    [CrossRef]
  9. W. R. Trutna, R. L. Byer, “Multiple-Pass Raman Gain Cell,” Appl. Opt. 19, 301–312 (1980).
    [CrossRef] [PubMed]
  10. J. Altmann, R. Baumgart, C. Weitkamp, “Two-Mirror Multipass Absorption Cell,” Appl. Opt. 20, 995–999 (1981).
    [CrossRef] [PubMed]
  11. J. B. McManus, P. L. Kebabian, C. E. Kolb, “Atmospheric Methane Measurement Instrument Using a Zeeman-Split He–Ne Laser,” Appl. Opt. 28, 5016–5023 (1989).
    [CrossRef] [PubMed]

1989 (1)

1988 (1)

1985 (1)

1982 (1)

D. T. Cassidy, J. Reid, “Harmonic Detection with Tunable Diode Lasers—Two Tone Modulation,” Appl. Phys. B 29, 279–285 (1982).
[CrossRef]

1981 (1)

1980 (2)

1976 (1)

1965 (1)

1964 (1)

1942 (1)

Altmann, J.

Ballik, E. A.

Baumgart, R.

Byer, R. L.

Cassidy, D. T.

D. T. Cassidy, J. Reid, “Harmonic Detection with Tunable Diode Lasers—Two Tone Modulation,” Appl. Phys. B 29, 279–285 (1982).
[CrossRef]

El-Sherbiny, M.

Garside, B. K.

Herriott, D. R.

Kebabian, P. L.

Kogelnik, H.

Kolb, C. E.

Kompfner, R.

McManus, J. B.

Reid, J.

Schulte, H. J.

Silver, J. A.

Stanton, A. C.

Trutna, W. R.

Webster, C. R.

Weitkamp, C.

White, J. U.

Appl. Opt. (7)

Appl. Phys. B (1)

D. T. Cassidy, J. Reid, “Harmonic Detection with Tunable Diode Lasers—Two Tone Modulation,” Appl. Phys. B 29, 279–285 (1982).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. B (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Plot of N(ϕ), the number of beam passes allowed for reentrant paths, as a function of ϕ, the normalized deviation of mirror separation d from the confocal separation R, i.e., ϕ ≈ (1 − d/R). The total number of mirror spots N(ϕ) falls on smooth curves defining families of (N,M) where N = 4MK and ϕ = 2π(M/N–¼).

Fig. 2
Fig. 2

Pressure scan through interference fringes in the Herriott cell: (A) with (N = 62, M = 16), the 14-Torr fringe period corresponds to an interference path length of four cell passes; (B) with (N = 64, M = 17), the 2.2-Torr fringe period corresponds to an interference path length of thirty-two cell passes.

Tables (1)

Tables Icon

Table I Families of Reentrant Path Parameters (N,M) and the Spot Numbers Neighboring the Coupling Hole

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ L 1 d ( N - J n 1 ) ,             Δ L 2 d ( N - J n 2 ) .
( J n 1 θ ) mod 2 π = 2 α ,             ( J n 2 θ ) mod 2 π = 2 π - 2 α ,

Metrics