Abstract

Nonlinear interaction between optical pulses limits the transmission speed of the optical communication system with solitons or very short optical pulses. A new technique of optical pulse separation is proposed. In this technique, optical pulses can be separated by employing the nonlinearity of fiber and the negative dispersion of the interferometer. It is shown that this method can remove undesirable interaction between optical soliton pulses, thus keeping the original information. The maximum channel capacity of fiber optic communication obtained by this pulse separation technique is discussed. The maximum bitrate can be 1 Tbit/s which is determined by the transform limit and by the dispersion of nonlinear fiber and of the interferometer.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Treacy, “Optical Pulse Compression with Diffraction Gratings,” IEEE J. Quantum Electron. QE-5, 454–458 (1969).
    [CrossRef]
  2. O. E. Martinez, “3000 Times Grating Compressor with Positive Group Velocity Dispersion: Application to Fiber Compression in 1.3–1.6μm Region,” IEEE J. Quantum Electron. QE-23, 59–64 (1987).
    [CrossRef]
  3. R. L. Fork, C. H. Brito Cruz, P. C. Becker, C. V. Shank, “Compression of Optical Pulses to 6 Femtoseconds by Using Cubic Phase Compensation,” Opt. Lett. 12, 483–485 (1987).
    [CrossRef] [PubMed]
  4. F. Gires, P. Tournois, “Interferometre Utilizable pour la Compression d’Impulsion Lumineuses Modulées en Fréquence,” C. R. Acad. Sci. 258, 6112–6115 (1964).

1987 (2)

O. E. Martinez, “3000 Times Grating Compressor with Positive Group Velocity Dispersion: Application to Fiber Compression in 1.3–1.6μm Region,” IEEE J. Quantum Electron. QE-23, 59–64 (1987).
[CrossRef]

R. L. Fork, C. H. Brito Cruz, P. C. Becker, C. V. Shank, “Compression of Optical Pulses to 6 Femtoseconds by Using Cubic Phase Compensation,” Opt. Lett. 12, 483–485 (1987).
[CrossRef] [PubMed]

1969 (1)

E. Treacy, “Optical Pulse Compression with Diffraction Gratings,” IEEE J. Quantum Electron. QE-5, 454–458 (1969).
[CrossRef]

1964 (1)

F. Gires, P. Tournois, “Interferometre Utilizable pour la Compression d’Impulsion Lumineuses Modulées en Fréquence,” C. R. Acad. Sci. 258, 6112–6115 (1964).

Becker, P. C.

Brito Cruz, C. H.

Fork, R. L.

Gires, F.

F. Gires, P. Tournois, “Interferometre Utilizable pour la Compression d’Impulsion Lumineuses Modulées en Fréquence,” C. R. Acad. Sci. 258, 6112–6115 (1964).

Martinez, O. E.

O. E. Martinez, “3000 Times Grating Compressor with Positive Group Velocity Dispersion: Application to Fiber Compression in 1.3–1.6μm Region,” IEEE J. Quantum Electron. QE-23, 59–64 (1987).
[CrossRef]

Shank, C. V.

Tournois, P.

F. Gires, P. Tournois, “Interferometre Utilizable pour la Compression d’Impulsion Lumineuses Modulées en Fréquence,” C. R. Acad. Sci. 258, 6112–6115 (1964).

Treacy, E.

E. Treacy, “Optical Pulse Compression with Diffraction Gratings,” IEEE J. Quantum Electron. QE-5, 454–458 (1969).
[CrossRef]

C. R. Acad. Sci. (1)

F. Gires, P. Tournois, “Interferometre Utilizable pour la Compression d’Impulsion Lumineuses Modulées en Fréquence,” C. R. Acad. Sci. 258, 6112–6115 (1964).

IEEE J. Quantum Electron. (2)

E. Treacy, “Optical Pulse Compression with Diffraction Gratings,” IEEE J. Quantum Electron. QE-5, 454–458 (1969).
[CrossRef]

O. E. Martinez, “3000 Times Grating Compressor with Positive Group Velocity Dispersion: Application to Fiber Compression in 1.3–1.6μm Region,” IEEE J. Quantum Electron. QE-23, 59–64 (1987).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Optical communication system using information-maintaining optical pulse separation.

Fig. 2
Fig. 2

Optical pulse amplitude and frequency chirping of a closely separated double pulse.

Fig. 3
Fig. 3

Principle of information-maintaining optical pulse separation.

Fig. 4
Fig. 4

Original waveform of an input double pulse 48 ps apart.

Fig. 5
Fig. 5

Separated waveform from the pulse in Fig. 4 by an ideal dispersive medium.

Fig. 6
Fig. 6

Separated waveform from the pulse in Fig. 4 by a Gires-Tournois interferometer.

Fig. 7
Fig. 7

Original waveform of an input double pulse 32 ps apart.

Fig. 8
Fig. 8

Separated waveform from the pulse in Fig. 7 by an ideal dispersive medium.

Fig. 9
Fig. 9

Recompressed waveform from the pulse in Fig. 7 by an ideal dispersive medium.

Fig. 10
Fig. 10

Original waveform of an input triple pulse 48 ps apart.

Fig. 11
Fig. 11

Separated triple-pulse waveform from the pulse in Fig. 10 by an ideal dispersive medium.

Fig. 12
Fig. 12

Achievable region of information-maintaining pulse separation.

Tables (1)

Tables Icon

Table I Numerical Examples of the Dispersion and the Higher-Order Dispersion for Various Dispersive Media

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

n = n 0 + n 2 E 2 ,
Δ ω = d ϕ d τ = k L n 2 d E 2 d τ ,
d τ d ω = L d 2 k d ω 2 = β L .
Δ ω Δ τ > π .
Δ v g - 1 = β fiber Δ ω = β fiber k L n 2 d E 2 d τ .
( Δ τ ) 2 Δ E 2 = π 2 β k n 2 ,
Δ τ > π Δ ω = π k L n 2 d E 2 d τ .
Δ τ > π β fiber z
Δ τ > π β fiber L
Δ τ min = π 2 / 3 β fiber 1 / 3 4 1 / 3 β 1 / 3 n 2 1 / 3 × ( Δ τ Δ E 2 ) 1 / 3 .
z opt = ( Δ τ min ) 2 π β fiber .

Metrics