Abstract

For low acoustic frequencies, the acoustooptic interaction in a fiber optic interferometric coil hydrophone has been modeled on assumptions of hydrostatic and radial stress. However, an inherent ambiguity exists in the way by which the correct model has been chosen. It is established through unambiguous experimental determination of the sign of the induced static phase change that the hydrostatic model alone is valid. The method involves the use of a phase modulator constructed by bonding an optical fiber onto a piezoelectric PVF2 film. Theoretical considerations which also favor the hydrostatic model are presented.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. G. Giallorenzi et al., “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626–665 (1982).
    [CrossRef]
  2. J. A. Bucaro, H. D. Dardy, E. F. Carome, “Fiber Optic Hydrophone,” J. Acoust. Soc. Am. 62, 1302–1304 (1977).
    [CrossRef]
  3. R. Hughes, J. Jarzynski, “Static Pressure Sensitivity Amplification in Interferometric Fiber-Optic Hydrophones,” Appl. Opt. 19, 98–107 (1980).
    [CrossRef] [PubMed]
  4. P. Shajenko, J. P. Flatley, M. B. Moffet, “On Fiber Optic Hydrophone Sensitivity,” J. Acoust, Soc. Am. 64, 1286–1288 (1978).
    [CrossRef]
  5. B. Culshaw, D. E. N. Davies, S. A. Kingsley, “Acoustic Sensitivity of Optical Fiber Waveguides,” Electron. Lett. 13, 760–761 (1977).
    [CrossRef]
  6. J. A. Bucaro, T. R. Hickman, “Measurement of Sensitivity of Optical Fibers for Acoustic Detection,” Appl. Opt. 18, 938–940 (1979).
    [CrossRef] [PubMed]
  7. J. Jarzynski, R. Hughes, T. R. Hickman, J. A. Bucaro, “Frequency Response of Interferometric Fiber Optic Coil Hydrophones,” J. Acoust. Soc. Am. 69, 1799–1808 (1981).
    [CrossRef]
  8. H. L. Price, “On the Mechanism of Transduction in Optical Fiber Hydrophones,” J. Acoust. Soc. Am. 66, 976–979 (1979).
    [CrossRef]
  9. R. N. Thurston, “Comments on ‘On the Mechanism of Transduction in Optical Fiber Hydrophones’,” J. Acoust. Soc. Am. 66, 976–979 (1979); J. Acoust. Soc. Am. 67, 1072–1073 (1980).
    [CrossRef]
  10. G. B. Hocker, “Fiber-Optic Sensing of Pressure and Temperature,” Appl. Opt. 18, 1445–1448 (1979).
    [CrossRef] [PubMed]
  11. B. Budiansky, D. C. Drucker, G. S. Kino, J. R. Rice, “Pressure Sensitivity of a Clad Optical Fiber,” Appl. Opt. 18, 4085–4088 (1979).
    [CrossRef] [PubMed]
  12. G. W. McMahon, P. G. Cielo, “Fiber Optic Hydrophone Sensitivity for Different Sensor Configurations,” Appl. Opt. 18, 3720–3722 (1979).
    [PubMed]
  13. P. G. Cielo, “Fiber Optic Hydrophone: Improved Strain Configuration and Environmental Noise Protection,” Appl. Opt. 18, 2933–2937 (1979).
    [CrossRef] [PubMed]
  14. G. B. Hocker, “Fiber Optic Acoustic Sensors with Composite Structure: an Analysis,” Appl. Opt. 18, 3679–3683 (1979).
    [CrossRef] [PubMed]
  15. T. J. Hall, “High Fidelity Multimode Optical Fiber Hydrophone,” Ph.D. Thesis, University College, London (1980).
  16. D. A. Pinnow, “Elastooptical Materials,” Handbook of Lasers, R. J. Pressley, Ed. (CRC Press, Cleveland, 1971).
  17. J. F. Nye, Physical Properties of Crystals (Clarendon, Oxford, 1976).
  18. A. Bertholds, R. Dandliker, “Deformation of Single-Mode Optical Fibers under Static Longitudinal Stress,” IEEE/OSA J. Lightwave Technol. LT-5, 895–900 (1987).
    [CrossRef]
  19. B. Budiansky, Harvard Univ., Div. Appl. Sci.; private communication; D. C. Drucker, Univ. of Florida, College of Engg.; private communication; G. W. McMahon, Defence Research Establishment Atlantic, Dartmouth; private communication; R. N. Thurston, Bell Communications Research, Redbank, NJ.; private communication.
  20. S. P. Timoshenko, J. N. Goodier, Theory of Elasticity (McGraw-Hill, Kogakusha, 1970).
  21. S. P. Timoshenko, G. H. MacCullough, Elements of Strength of Materials (Van Nostrand, New York, 1948).
  22. A. H. Cook, Interference of Electromagnetic Waves (Clarendon, Oxford, 1971).
  23. Technical Manual, Kynar Piezofilm (Pennwalt Corp., King of Prussia, PA, 1983).
  24. V. S. Sudarshanam, K. Srinivasan, “Linear Readout of Dynamic Phase Change in a Fiber-Optic Homodyne Interferometer,” Opt. Lett. 14, 140–142 (1989).
    [CrossRef] [PubMed]
  25. C. D. Butter, G. B. Hocker, “Fiber Optics Strain Gauge,” Appl. Opt. 17, 2867–2869 (1978).
    [CrossRef] [PubMed]
  26. S. Nemoto, “A Method for Observing Fringe Movement in a Fiber Interferometer,” Opt. Quantum Electron. 16, 165–171 (1984).
    [CrossRef]
  27. N. Lagakos, J. A. Bucaro, R. Hughes, “Acoustic Sensitivity Predictions of Single-Mode Optical Fibers Using Brillouin Scattering,” Appl. Opt. 19, 3668–3670 (1980).
    [CrossRef] [PubMed]
  28. N. Lagakos, E. U. Schnaus, J. H. Cole, J. Jarzynski, J. A. Bucaro, “Optimizing Fiber Coatings for Interferometric Acoustic Sensors,” IEEE J. Quantum. Electron. QE-18, 683–689 (1982).
    [CrossRef]

1989 (1)

1987 (1)

A. Bertholds, R. Dandliker, “Deformation of Single-Mode Optical Fibers under Static Longitudinal Stress,” IEEE/OSA J. Lightwave Technol. LT-5, 895–900 (1987).
[CrossRef]

1984 (1)

S. Nemoto, “A Method for Observing Fringe Movement in a Fiber Interferometer,” Opt. Quantum Electron. 16, 165–171 (1984).
[CrossRef]

1982 (2)

N. Lagakos, E. U. Schnaus, J. H. Cole, J. Jarzynski, J. A. Bucaro, “Optimizing Fiber Coatings for Interferometric Acoustic Sensors,” IEEE J. Quantum. Electron. QE-18, 683–689 (1982).
[CrossRef]

T. G. Giallorenzi et al., “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626–665 (1982).
[CrossRef]

1981 (1)

J. Jarzynski, R. Hughes, T. R. Hickman, J. A. Bucaro, “Frequency Response of Interferometric Fiber Optic Coil Hydrophones,” J. Acoust. Soc. Am. 69, 1799–1808 (1981).
[CrossRef]

1980 (2)

1979 (8)

1978 (2)

C. D. Butter, G. B. Hocker, “Fiber Optics Strain Gauge,” Appl. Opt. 17, 2867–2869 (1978).
[CrossRef] [PubMed]

P. Shajenko, J. P. Flatley, M. B. Moffet, “On Fiber Optic Hydrophone Sensitivity,” J. Acoust, Soc. Am. 64, 1286–1288 (1978).
[CrossRef]

1977 (2)

B. Culshaw, D. E. N. Davies, S. A. Kingsley, “Acoustic Sensitivity of Optical Fiber Waveguides,” Electron. Lett. 13, 760–761 (1977).
[CrossRef]

J. A. Bucaro, H. D. Dardy, E. F. Carome, “Fiber Optic Hydrophone,” J. Acoust. Soc. Am. 62, 1302–1304 (1977).
[CrossRef]

Bertholds, A.

A. Bertholds, R. Dandliker, “Deformation of Single-Mode Optical Fibers under Static Longitudinal Stress,” IEEE/OSA J. Lightwave Technol. LT-5, 895–900 (1987).
[CrossRef]

Bucaro, J. A.

N. Lagakos, E. U. Schnaus, J. H. Cole, J. Jarzynski, J. A. Bucaro, “Optimizing Fiber Coatings for Interferometric Acoustic Sensors,” IEEE J. Quantum. Electron. QE-18, 683–689 (1982).
[CrossRef]

J. Jarzynski, R. Hughes, T. R. Hickman, J. A. Bucaro, “Frequency Response of Interferometric Fiber Optic Coil Hydrophones,” J. Acoust. Soc. Am. 69, 1799–1808 (1981).
[CrossRef]

N. Lagakos, J. A. Bucaro, R. Hughes, “Acoustic Sensitivity Predictions of Single-Mode Optical Fibers Using Brillouin Scattering,” Appl. Opt. 19, 3668–3670 (1980).
[CrossRef] [PubMed]

J. A. Bucaro, T. R. Hickman, “Measurement of Sensitivity of Optical Fibers for Acoustic Detection,” Appl. Opt. 18, 938–940 (1979).
[CrossRef] [PubMed]

J. A. Bucaro, H. D. Dardy, E. F. Carome, “Fiber Optic Hydrophone,” J. Acoust. Soc. Am. 62, 1302–1304 (1977).
[CrossRef]

Budiansky, B.

B. Budiansky, D. C. Drucker, G. S. Kino, J. R. Rice, “Pressure Sensitivity of a Clad Optical Fiber,” Appl. Opt. 18, 4085–4088 (1979).
[CrossRef] [PubMed]

B. Budiansky, Harvard Univ., Div. Appl. Sci.; private communication; D. C. Drucker, Univ. of Florida, College of Engg.; private communication; G. W. McMahon, Defence Research Establishment Atlantic, Dartmouth; private communication; R. N. Thurston, Bell Communications Research, Redbank, NJ.; private communication.

Butter, C. D.

Carome, E. F.

J. A. Bucaro, H. D. Dardy, E. F. Carome, “Fiber Optic Hydrophone,” J. Acoust. Soc. Am. 62, 1302–1304 (1977).
[CrossRef]

Cielo, P. G.

Cole, J. H.

N. Lagakos, E. U. Schnaus, J. H. Cole, J. Jarzynski, J. A. Bucaro, “Optimizing Fiber Coatings for Interferometric Acoustic Sensors,” IEEE J. Quantum. Electron. QE-18, 683–689 (1982).
[CrossRef]

Cook, A. H.

A. H. Cook, Interference of Electromagnetic Waves (Clarendon, Oxford, 1971).

Culshaw, B.

B. Culshaw, D. E. N. Davies, S. A. Kingsley, “Acoustic Sensitivity of Optical Fiber Waveguides,” Electron. Lett. 13, 760–761 (1977).
[CrossRef]

Dandliker, R.

A. Bertholds, R. Dandliker, “Deformation of Single-Mode Optical Fibers under Static Longitudinal Stress,” IEEE/OSA J. Lightwave Technol. LT-5, 895–900 (1987).
[CrossRef]

Dardy, H. D.

J. A. Bucaro, H. D. Dardy, E. F. Carome, “Fiber Optic Hydrophone,” J. Acoust. Soc. Am. 62, 1302–1304 (1977).
[CrossRef]

Davies, D. E. N.

B. Culshaw, D. E. N. Davies, S. A. Kingsley, “Acoustic Sensitivity of Optical Fiber Waveguides,” Electron. Lett. 13, 760–761 (1977).
[CrossRef]

Drucker, D. C.

Flatley, J. P.

P. Shajenko, J. P. Flatley, M. B. Moffet, “On Fiber Optic Hydrophone Sensitivity,” J. Acoust, Soc. Am. 64, 1286–1288 (1978).
[CrossRef]

Giallorenzi, T. G.

T. G. Giallorenzi et al., “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626–665 (1982).
[CrossRef]

Goodier, J. N.

S. P. Timoshenko, J. N. Goodier, Theory of Elasticity (McGraw-Hill, Kogakusha, 1970).

Hall, T. J.

T. J. Hall, “High Fidelity Multimode Optical Fiber Hydrophone,” Ph.D. Thesis, University College, London (1980).

Hickman, T. R.

J. Jarzynski, R. Hughes, T. R. Hickman, J. A. Bucaro, “Frequency Response of Interferometric Fiber Optic Coil Hydrophones,” J. Acoust. Soc. Am. 69, 1799–1808 (1981).
[CrossRef]

J. A. Bucaro, T. R. Hickman, “Measurement of Sensitivity of Optical Fibers for Acoustic Detection,” Appl. Opt. 18, 938–940 (1979).
[CrossRef] [PubMed]

Hocker, G. B.

Hughes, R.

Jarzynski, J.

N. Lagakos, E. U. Schnaus, J. H. Cole, J. Jarzynski, J. A. Bucaro, “Optimizing Fiber Coatings for Interferometric Acoustic Sensors,” IEEE J. Quantum. Electron. QE-18, 683–689 (1982).
[CrossRef]

J. Jarzynski, R. Hughes, T. R. Hickman, J. A. Bucaro, “Frequency Response of Interferometric Fiber Optic Coil Hydrophones,” J. Acoust. Soc. Am. 69, 1799–1808 (1981).
[CrossRef]

R. Hughes, J. Jarzynski, “Static Pressure Sensitivity Amplification in Interferometric Fiber-Optic Hydrophones,” Appl. Opt. 19, 98–107 (1980).
[CrossRef] [PubMed]

Kingsley, S. A.

B. Culshaw, D. E. N. Davies, S. A. Kingsley, “Acoustic Sensitivity of Optical Fiber Waveguides,” Electron. Lett. 13, 760–761 (1977).
[CrossRef]

Kino, G. S.

Lagakos, N.

N. Lagakos, E. U. Schnaus, J. H. Cole, J. Jarzynski, J. A. Bucaro, “Optimizing Fiber Coatings for Interferometric Acoustic Sensors,” IEEE J. Quantum. Electron. QE-18, 683–689 (1982).
[CrossRef]

N. Lagakos, J. A. Bucaro, R. Hughes, “Acoustic Sensitivity Predictions of Single-Mode Optical Fibers Using Brillouin Scattering,” Appl. Opt. 19, 3668–3670 (1980).
[CrossRef] [PubMed]

MacCullough, G. H.

S. P. Timoshenko, G. H. MacCullough, Elements of Strength of Materials (Van Nostrand, New York, 1948).

McMahon, G. W.

Moffet, M. B.

P. Shajenko, J. P. Flatley, M. B. Moffet, “On Fiber Optic Hydrophone Sensitivity,” J. Acoust, Soc. Am. 64, 1286–1288 (1978).
[CrossRef]

Nemoto, S.

S. Nemoto, “A Method for Observing Fringe Movement in a Fiber Interferometer,” Opt. Quantum Electron. 16, 165–171 (1984).
[CrossRef]

Nye, J. F.

J. F. Nye, Physical Properties of Crystals (Clarendon, Oxford, 1976).

Pinnow, D. A.

D. A. Pinnow, “Elastooptical Materials,” Handbook of Lasers, R. J. Pressley, Ed. (CRC Press, Cleveland, 1971).

Price, H. L.

H. L. Price, “On the Mechanism of Transduction in Optical Fiber Hydrophones,” J. Acoust. Soc. Am. 66, 976–979 (1979).
[CrossRef]

Rice, J. R.

Schnaus, E. U.

N. Lagakos, E. U. Schnaus, J. H. Cole, J. Jarzynski, J. A. Bucaro, “Optimizing Fiber Coatings for Interferometric Acoustic Sensors,” IEEE J. Quantum. Electron. QE-18, 683–689 (1982).
[CrossRef]

Shajenko, P.

P. Shajenko, J. P. Flatley, M. B. Moffet, “On Fiber Optic Hydrophone Sensitivity,” J. Acoust, Soc. Am. 64, 1286–1288 (1978).
[CrossRef]

Srinivasan, K.

Sudarshanam, V. S.

Thurston, R. N.

R. N. Thurston, “Comments on ‘On the Mechanism of Transduction in Optical Fiber Hydrophones’,” J. Acoust. Soc. Am. 66, 976–979 (1979); J. Acoust. Soc. Am. 67, 1072–1073 (1980).
[CrossRef]

Timoshenko, S. P.

S. P. Timoshenko, J. N. Goodier, Theory of Elasticity (McGraw-Hill, Kogakusha, 1970).

S. P. Timoshenko, G. H. MacCullough, Elements of Strength of Materials (Van Nostrand, New York, 1948).

Appl. Opt. (9)

Electron. Lett. (1)

B. Culshaw, D. E. N. Davies, S. A. Kingsley, “Acoustic Sensitivity of Optical Fiber Waveguides,” Electron. Lett. 13, 760–761 (1977).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. G. Giallorenzi et al., “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626–665 (1982).
[CrossRef]

IEEE J. Quantum. Electron. (1)

N. Lagakos, E. U. Schnaus, J. H. Cole, J. Jarzynski, J. A. Bucaro, “Optimizing Fiber Coatings for Interferometric Acoustic Sensors,” IEEE J. Quantum. Electron. QE-18, 683–689 (1982).
[CrossRef]

IEEE/OSA J. Lightwave Technol. (1)

A. Bertholds, R. Dandliker, “Deformation of Single-Mode Optical Fibers under Static Longitudinal Stress,” IEEE/OSA J. Lightwave Technol. LT-5, 895–900 (1987).
[CrossRef]

J. Acoust, Soc. Am. (1)

P. Shajenko, J. P. Flatley, M. B. Moffet, “On Fiber Optic Hydrophone Sensitivity,” J. Acoust, Soc. Am. 64, 1286–1288 (1978).
[CrossRef]

J. Acoust. Soc. Am. (4)

J. A. Bucaro, H. D. Dardy, E. F. Carome, “Fiber Optic Hydrophone,” J. Acoust. Soc. Am. 62, 1302–1304 (1977).
[CrossRef]

J. Jarzynski, R. Hughes, T. R. Hickman, J. A. Bucaro, “Frequency Response of Interferometric Fiber Optic Coil Hydrophones,” J. Acoust. Soc. Am. 69, 1799–1808 (1981).
[CrossRef]

H. L. Price, “On the Mechanism of Transduction in Optical Fiber Hydrophones,” J. Acoust. Soc. Am. 66, 976–979 (1979).
[CrossRef]

R. N. Thurston, “Comments on ‘On the Mechanism of Transduction in Optical Fiber Hydrophones’,” J. Acoust. Soc. Am. 66, 976–979 (1979); J. Acoust. Soc. Am. 67, 1072–1073 (1980).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

S. Nemoto, “A Method for Observing Fringe Movement in a Fiber Interferometer,” Opt. Quantum Electron. 16, 165–171 (1984).
[CrossRef]

Other (8)

B. Budiansky, Harvard Univ., Div. Appl. Sci.; private communication; D. C. Drucker, Univ. of Florida, College of Engg.; private communication; G. W. McMahon, Defence Research Establishment Atlantic, Dartmouth; private communication; R. N. Thurston, Bell Communications Research, Redbank, NJ.; private communication.

S. P. Timoshenko, J. N. Goodier, Theory of Elasticity (McGraw-Hill, Kogakusha, 1970).

S. P. Timoshenko, G. H. MacCullough, Elements of Strength of Materials (Van Nostrand, New York, 1948).

A. H. Cook, Interference of Electromagnetic Waves (Clarendon, Oxford, 1971).

Technical Manual, Kynar Piezofilm (Pennwalt Corp., King of Prussia, PA, 1983).

T. J. Hall, “High Fidelity Multimode Optical Fiber Hydrophone,” Ph.D. Thesis, University College, London (1980).

D. A. Pinnow, “Elastooptical Materials,” Handbook of Lasers, R. J. Pressley, Ed. (CRC Press, Cleveland, 1971).

J. F. Nye, Physical Properties of Crystals (Clarendon, Oxford, 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Plots of the ratio of sensitivity increase I for the RPH and HPH as a function of radius parameter q for different values of Poisson’s ratio ν c of coating (a) up to ν c = 0.45, Young’s modulus ratio (E g /E c ) = 30, and (b) for ν c = 0.5, Young’s modulus ratio = 1000.

Fig. 2
Fig. 2

Geometry of the fiber ring for (a) Lame’s solution method and (b) the free body method.

Fig. 3
Fig. 3

Geometry of the fiber ring for the projected area method: (a) upper half exerting pressure on lower half; (b) ring shown cut across the diameter; and (c) the outer and inner bounding surfaces shown as projected areas.

Fig. 4
Fig. 4

Schematic experimental setup for determination of the sign of static phase change in a fiber optic coil hydrophone.

Fig. 5
Fig. 5

Relation of the poling direction to (a) the three axes of the piezofilm and (b) the direction of applied field for an elongation of the piezofilm.

Fig. 6
Fig. 6

Schematic plots of the time dependence of (a) the increase in the reference fiber phase Φ R (t), (b) corresponding photodetector instantaneous voltage V(t) in the absence of signal phase change Φ s (t), and (c) change in different sections P,Q,R,S of V(t) when Φ s (t) starts changing. ⊕ indicates an increase in Φ s ; ⊝ indicates a decrease in Φ s .

Fig. 7
Fig. 7

Signal analyzer plots of the time dependence of (a) V(t) for an increase in pressure and (b) V(t) for a decrease in pressure of the fiber coil. St denotes the instant at which the signal fiber phase starts changing. GH denotes the region of decreasing ramp input voltage.

Fig. 8
Fig. 8

Signal analyzer plots of the time dependence of (a) a dc bias voltage applied to the FPF opposing the poling direction and (b) a corresponding photodetector output V(t).

Fig. 9
Fig. 9

Signal analyzer plots of photodetector instantaneous voltage V(t) in the absence of ramp input to the FPF for a change in pressure on the signal fiber of (a) 34 kPa, (b) 58 kPa, and (c) 72 kPa.

Fig. 10
Fig. 10

Plots of the sensitivity increase I predicted by (a) HPH and (b) RPH as a function of the ratio of Young’s moduli for glass E g and coating E c for different values of Poisson’s ratio ν c , of the coating. Radius parameter q = 1.84.

Tables (2)

Tables Icon

Table I Comparison of the Three Hypotheses Describing the Acoustooptic Interaction in a Fiber Optic Coil Hydrophone

Tables Icon

Table II Values for Relevant Parameters of the FPF, Plezofilm, and Optical Fiber

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

Δ Φ = β Δ L + L d β d n Δ n + L d β d D Δ D ,
β = n k 0 ; d β d n = k 0 ,
Δ ( 1 n 2 ) i = p i j j ( i , j = x , y , z ) ,
Δ n = - n 3 2 Δ ( 1 n 2 ) x , y ,
p i j = [ p 11 p 12 p 12 p 12 p 11 p 12 p 12 p 12 p 11 ] .
Δ Φ = β z L - 1 2 k 0 n 3 L Δ ( 1 n 2 ) x , y .
( σ r ) r = a = - p i ,
( σ r ) r = b = - p o .
σ r = a 2 b 2 ( p o - p i ) b 2 - a 2 1 r 2 + p i a 2 - p o b 2 b 2 - a 2 ,
σ θ = - a 2 b 2 ( p o - p i ) b 2 - a 2 1 r 2 + p i a 2 - p o b 2 b 2 - a 2 .
2 F 1 = 2 0 π / 2 q 1 r sin θ d θ = 2 q 1 r ,
F 1 = q 1 r = q i a .
F = - q ( b - a ) ,
2 F 1 = A 1 P ,
2 F 2 = - A 2 P ,
F = - P ( A 2 - A 1 ) / 2 = - P C .
V ( t ) = 2 v [ 1 + cos Φ ( t ) ] ,
V ( t ) = 2 v { 1 + cos [ w t - Φ s ( t ) ] } ,
Φ s ( t ) = Ω ( t ) d t ,

Metrics