Abstract

Theoretical studies of backward collinear acoustooptic interactions (BCAOI) in both isotropic and anisotropic materials are presented. Such interactions have practical interest as a result of recent progress on very high frequency piezoelectric transducers. BCAOI configurations which involve bulk acoustic waves in fused silica, germanium, and several uniaxial single crystals are analyzed. We discuss propagation loss at high frequency in these materials.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. F. Quate, C. D. W. Wilkinson, D. K. Winslow, “Interaction of Light and Microwave Sound,” Proc. IEEE 53, 1604–1623 (1965).
    [CrossRef]
  2. S. T. K. Nieh, S. E. Harris, “Aperture-Bandwidth Characteristics of the Acousto-Optic Filter,” J. Opt. Soc. Am. 62, 672–676 (1972).
    [CrossRef]
  3. R. W. Dixon, “Acoustic Diffraction of Light in Anisotropic Media,” IEEE J. Quantum Electron. QE-3, 85–93 (1967).
    [CrossRef]
  4. I. C. Chang, “Acoustooptic Devices and Applications,” IEEE Trans. Sonics and Ultrason. SU-23, 2–22 (1976).
    [CrossRef]
  5. J. B. Houston et al., “The Potential for Acousto-Optics in Instrumentation: An Overview for the 1980’s,” Opt. Eng. 20, 712–718 (1981).
  6. B. Hadimioglu, B. T. Khuri-Yakub, L. C. Goddard, C. F. Quate, “Multi-Layer ZnO Acoustic Transducers,” Proc. IEEE Ultrasonics Symp.361–364 (1986).
  7. B. Hadimioglu, L. J. La Comb, D. R. Wright, B. T. Khuri-Yakub, C. F. Quate, “High Efficiency, Multiple Layer ZnO Acoustic Transducers at Millimeter wave Frequencies,” Appl. Phys. Lett. 50, 1642–1644 (1987).
    [CrossRef]
  8. C. K. Jen, N. Goto, “Backward Collinear Guided-Wave-Acousto-Optic Interactions in Single Mode Fibers,” IEEE/OSA J. Lightwave Technol. LT-7, 2018–2023 (1989).
    [CrossRef]
  9. E. Akcakaya, E. L. Adler, G. W. Farnell, “Anisotropic Superlattice Transducers: Characteristics and Models,” Proc. Ultrasonics Symp.333–338 (1988).
  10. Y. Yariv, M. Nakamura, “Periodic Structures for Integrated Optics,” IEEE J. Quantum Electron QE-13, 233–253 (1977).
    [CrossRef]
  11. Data were collected from many references but mainly from N. Uchida, N. Niizeki, “Acoustooptic Deflection Materials and Techniques,” Proc. IEEE 61, 1073–1092 (1973).
    [CrossRef]
  12. J. E. B. Oliveira, E. L. Adler, “Analysis of Off-Optical Axis Anisotropic Diffraction in Tellurium at 10.6 μm,” IEEE Trans. Ultrason., Ferroelectrics and Freq. Control UFFC-34, 86–92 (1987).
    [CrossRef]

1989 (1)

C. K. Jen, N. Goto, “Backward Collinear Guided-Wave-Acousto-Optic Interactions in Single Mode Fibers,” IEEE/OSA J. Lightwave Technol. LT-7, 2018–2023 (1989).
[CrossRef]

1988 (1)

E. Akcakaya, E. L. Adler, G. W. Farnell, “Anisotropic Superlattice Transducers: Characteristics and Models,” Proc. Ultrasonics Symp.333–338 (1988).

1987 (2)

B. Hadimioglu, L. J. La Comb, D. R. Wright, B. T. Khuri-Yakub, C. F. Quate, “High Efficiency, Multiple Layer ZnO Acoustic Transducers at Millimeter wave Frequencies,” Appl. Phys. Lett. 50, 1642–1644 (1987).
[CrossRef]

J. E. B. Oliveira, E. L. Adler, “Analysis of Off-Optical Axis Anisotropic Diffraction in Tellurium at 10.6 μm,” IEEE Trans. Ultrason., Ferroelectrics and Freq. Control UFFC-34, 86–92 (1987).
[CrossRef]

1986 (1)

B. Hadimioglu, B. T. Khuri-Yakub, L. C. Goddard, C. F. Quate, “Multi-Layer ZnO Acoustic Transducers,” Proc. IEEE Ultrasonics Symp.361–364 (1986).

1981 (1)

J. B. Houston et al., “The Potential for Acousto-Optics in Instrumentation: An Overview for the 1980’s,” Opt. Eng. 20, 712–718 (1981).

1977 (1)

Y. Yariv, M. Nakamura, “Periodic Structures for Integrated Optics,” IEEE J. Quantum Electron QE-13, 233–253 (1977).
[CrossRef]

1976 (1)

I. C. Chang, “Acoustooptic Devices and Applications,” IEEE Trans. Sonics and Ultrason. SU-23, 2–22 (1976).
[CrossRef]

1973 (1)

Data were collected from many references but mainly from N. Uchida, N. Niizeki, “Acoustooptic Deflection Materials and Techniques,” Proc. IEEE 61, 1073–1092 (1973).
[CrossRef]

1972 (1)

1967 (1)

R. W. Dixon, “Acoustic Diffraction of Light in Anisotropic Media,” IEEE J. Quantum Electron. QE-3, 85–93 (1967).
[CrossRef]

1965 (1)

C. F. Quate, C. D. W. Wilkinson, D. K. Winslow, “Interaction of Light and Microwave Sound,” Proc. IEEE 53, 1604–1623 (1965).
[CrossRef]

Adler, E. L.

E. Akcakaya, E. L. Adler, G. W. Farnell, “Anisotropic Superlattice Transducers: Characteristics and Models,” Proc. Ultrasonics Symp.333–338 (1988).

J. E. B. Oliveira, E. L. Adler, “Analysis of Off-Optical Axis Anisotropic Diffraction in Tellurium at 10.6 μm,” IEEE Trans. Ultrason., Ferroelectrics and Freq. Control UFFC-34, 86–92 (1987).
[CrossRef]

Akcakaya, E.

E. Akcakaya, E. L. Adler, G. W. Farnell, “Anisotropic Superlattice Transducers: Characteristics and Models,” Proc. Ultrasonics Symp.333–338 (1988).

Chang, I. C.

I. C. Chang, “Acoustooptic Devices and Applications,” IEEE Trans. Sonics and Ultrason. SU-23, 2–22 (1976).
[CrossRef]

Dixon, R. W.

R. W. Dixon, “Acoustic Diffraction of Light in Anisotropic Media,” IEEE J. Quantum Electron. QE-3, 85–93 (1967).
[CrossRef]

Farnell, G. W.

E. Akcakaya, E. L. Adler, G. W. Farnell, “Anisotropic Superlattice Transducers: Characteristics and Models,” Proc. Ultrasonics Symp.333–338 (1988).

Goddard, L. C.

B. Hadimioglu, B. T. Khuri-Yakub, L. C. Goddard, C. F. Quate, “Multi-Layer ZnO Acoustic Transducers,” Proc. IEEE Ultrasonics Symp.361–364 (1986).

Goto, N.

C. K. Jen, N. Goto, “Backward Collinear Guided-Wave-Acousto-Optic Interactions in Single Mode Fibers,” IEEE/OSA J. Lightwave Technol. LT-7, 2018–2023 (1989).
[CrossRef]

Hadimioglu, B.

B. Hadimioglu, L. J. La Comb, D. R. Wright, B. T. Khuri-Yakub, C. F. Quate, “High Efficiency, Multiple Layer ZnO Acoustic Transducers at Millimeter wave Frequencies,” Appl. Phys. Lett. 50, 1642–1644 (1987).
[CrossRef]

B. Hadimioglu, B. T. Khuri-Yakub, L. C. Goddard, C. F. Quate, “Multi-Layer ZnO Acoustic Transducers,” Proc. IEEE Ultrasonics Symp.361–364 (1986).

Harris, S. E.

Houston, J. B.

J. B. Houston et al., “The Potential for Acousto-Optics in Instrumentation: An Overview for the 1980’s,” Opt. Eng. 20, 712–718 (1981).

Jen, C. K.

C. K. Jen, N. Goto, “Backward Collinear Guided-Wave-Acousto-Optic Interactions in Single Mode Fibers,” IEEE/OSA J. Lightwave Technol. LT-7, 2018–2023 (1989).
[CrossRef]

Khuri-Yakub, B. T.

B. Hadimioglu, L. J. La Comb, D. R. Wright, B. T. Khuri-Yakub, C. F. Quate, “High Efficiency, Multiple Layer ZnO Acoustic Transducers at Millimeter wave Frequencies,” Appl. Phys. Lett. 50, 1642–1644 (1987).
[CrossRef]

B. Hadimioglu, B. T. Khuri-Yakub, L. C. Goddard, C. F. Quate, “Multi-Layer ZnO Acoustic Transducers,” Proc. IEEE Ultrasonics Symp.361–364 (1986).

La Comb, L. J.

B. Hadimioglu, L. J. La Comb, D. R. Wright, B. T. Khuri-Yakub, C. F. Quate, “High Efficiency, Multiple Layer ZnO Acoustic Transducers at Millimeter wave Frequencies,” Appl. Phys. Lett. 50, 1642–1644 (1987).
[CrossRef]

Nakamura, M.

Y. Yariv, M. Nakamura, “Periodic Structures for Integrated Optics,” IEEE J. Quantum Electron QE-13, 233–253 (1977).
[CrossRef]

Nieh, S. T. K.

Niizeki, N.

Data were collected from many references but mainly from N. Uchida, N. Niizeki, “Acoustooptic Deflection Materials and Techniques,” Proc. IEEE 61, 1073–1092 (1973).
[CrossRef]

Oliveira, J. E. B.

J. E. B. Oliveira, E. L. Adler, “Analysis of Off-Optical Axis Anisotropic Diffraction in Tellurium at 10.6 μm,” IEEE Trans. Ultrason., Ferroelectrics and Freq. Control UFFC-34, 86–92 (1987).
[CrossRef]

Quate, C. F.

B. Hadimioglu, L. J. La Comb, D. R. Wright, B. T. Khuri-Yakub, C. F. Quate, “High Efficiency, Multiple Layer ZnO Acoustic Transducers at Millimeter wave Frequencies,” Appl. Phys. Lett. 50, 1642–1644 (1987).
[CrossRef]

B. Hadimioglu, B. T. Khuri-Yakub, L. C. Goddard, C. F. Quate, “Multi-Layer ZnO Acoustic Transducers,” Proc. IEEE Ultrasonics Symp.361–364 (1986).

C. F. Quate, C. D. W. Wilkinson, D. K. Winslow, “Interaction of Light and Microwave Sound,” Proc. IEEE 53, 1604–1623 (1965).
[CrossRef]

Uchida, N.

Data were collected from many references but mainly from N. Uchida, N. Niizeki, “Acoustooptic Deflection Materials and Techniques,” Proc. IEEE 61, 1073–1092 (1973).
[CrossRef]

Wilkinson, C. D. W.

C. F. Quate, C. D. W. Wilkinson, D. K. Winslow, “Interaction of Light and Microwave Sound,” Proc. IEEE 53, 1604–1623 (1965).
[CrossRef]

Winslow, D. K.

C. F. Quate, C. D. W. Wilkinson, D. K. Winslow, “Interaction of Light and Microwave Sound,” Proc. IEEE 53, 1604–1623 (1965).
[CrossRef]

Wright, D. R.

B. Hadimioglu, L. J. La Comb, D. R. Wright, B. T. Khuri-Yakub, C. F. Quate, “High Efficiency, Multiple Layer ZnO Acoustic Transducers at Millimeter wave Frequencies,” Appl. Phys. Lett. 50, 1642–1644 (1987).
[CrossRef]

Yariv, Y.

Y. Yariv, M. Nakamura, “Periodic Structures for Integrated Optics,” IEEE J. Quantum Electron QE-13, 233–253 (1977).
[CrossRef]

Appl. Phys. Lett. (1)

B. Hadimioglu, L. J. La Comb, D. R. Wright, B. T. Khuri-Yakub, C. F. Quate, “High Efficiency, Multiple Layer ZnO Acoustic Transducers at Millimeter wave Frequencies,” Appl. Phys. Lett. 50, 1642–1644 (1987).
[CrossRef]

IEEE J. Quantum Electron (1)

Y. Yariv, M. Nakamura, “Periodic Structures for Integrated Optics,” IEEE J. Quantum Electron QE-13, 233–253 (1977).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. W. Dixon, “Acoustic Diffraction of Light in Anisotropic Media,” IEEE J. Quantum Electron. QE-3, 85–93 (1967).
[CrossRef]

IEEE Trans. Sonics and Ultrason. (1)

I. C. Chang, “Acoustooptic Devices and Applications,” IEEE Trans. Sonics and Ultrason. SU-23, 2–22 (1976).
[CrossRef]

IEEE Trans. Ultrason., Ferroelectrics and Freq. Control (1)

J. E. B. Oliveira, E. L. Adler, “Analysis of Off-Optical Axis Anisotropic Diffraction in Tellurium at 10.6 μm,” IEEE Trans. Ultrason., Ferroelectrics and Freq. Control UFFC-34, 86–92 (1987).
[CrossRef]

IEEE/OSA J. Lightwave Technol. (1)

C. K. Jen, N. Goto, “Backward Collinear Guided-Wave-Acousto-Optic Interactions in Single Mode Fibers,” IEEE/OSA J. Lightwave Technol. LT-7, 2018–2023 (1989).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Eng. (1)

J. B. Houston et al., “The Potential for Acousto-Optics in Instrumentation: An Overview for the 1980’s,” Opt. Eng. 20, 712–718 (1981).

Proc. IEEE (2)

C. F. Quate, C. D. W. Wilkinson, D. K. Winslow, “Interaction of Light and Microwave Sound,” Proc. IEEE 53, 1604–1623 (1965).
[CrossRef]

Data were collected from many references but mainly from N. Uchida, N. Niizeki, “Acoustooptic Deflection Materials and Techniques,” Proc. IEEE 61, 1073–1092 (1973).
[CrossRef]

Proc. IEEE Ultrasonics Symp. (1)

B. Hadimioglu, B. T. Khuri-Yakub, L. C. Goddard, C. F. Quate, “Multi-Layer ZnO Acoustic Transducers,” Proc. IEEE Ultrasonics Symp.361–364 (1986).

Proc. Ultrasonics Symp. (1)

E. Akcakaya, E. L. Adler, G. W. Farnell, “Anisotropic Superlattice Transducers: Characteristics and Models,” Proc. Ultrasonics Symp.333–338 (1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Wavevector diagram for BCAOI.

Fig. 2
Fig. 2

BCAOI configuration with acoustic transducer.

Fig. 3
Fig. 3

Variation of peff as a function of θ B for longitudinal acoustic wave in fused silica at 0.6328 μm and in Ge [100] at 10.6 μm.

Fig. 4
Fig. 4

BCAOI in positive uniaxial crystals whose optical and acoustic wavevectors are orthogonal to the optical axis. For negative crystals n e and n o are interchanged.

Fig. 5
Fig. 5

BCAOI in positive uniaxial crystals whose optical and acoustic wavevectors lie in a plane which is arbitrarily oriented with respect to the optical axis.

Tables (3)

Tables Icon

Table I Acoustic and Optical Properties of Several Materials11

Tables Icon

Table II Acoustic Properties at ka = 2k0

Tables Icon

Table III peff and M2 In LiNbO3 for BCAOI with longitudinal acoustic wave along [100]

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

k o i ± k a = k o d ,
Ω o i ± f a = Ω o d ,
I d I i = tan h 2 ( η 1 / 2 L ) ,
η = π 2 2 λ o 2 M 2 ( P a W H ) ,
M 2 = n i 3 n d 3 ρ v a 3 ( p eff ) 2
p eff = p 12 sin 2 θ B - p 11 cos 2 θ B ,
M 2 = 15.24 10 - 16 ( S 3 / k g ) for fused silica at 0.6328 μ m ,
M 2 = 3.53 10 - 13 ( S 3 / k g ) for Ge at 10.6 μ m .
f a = ν a λ 0 ( n e + n o ) ,
f a = ν a λ o 2 n o ,
f a = ν a λ o 2 n e ,
f a = ν a n o λ o [ n e ( n o 2 cos 2 θ + n e 2 sin 2 θ ) 1 / 2 + 1 ] ,
Δ f a = ν a n o λ o [ n e ( n o 2 cos 2 θ + n e 2 sin 2 θ ) 1 / 2 - 1 ] .

Metrics