Abstract

Laser induced electrical parameter degradation and morphological damage have been observed in silicon photodiodes. The samples were RCA reach-through avalanche photodiodes and EG&G PIN photodiodes. The laser source was a 1064-nm Q-switched Nd:YAG laser (10-Hz, 10-ns pulses with a 300-μm spot radius). Reverse saturation current, noise current, breakdown voltage, junction capacitance, and surface morphology were monitored for permanent laser induced change. The current characteristics were clearly the most sensitive electrical parameters; however, the electrical performance was generally insensitive to severe surface morphological damage. The damage behavior indicated that the electrical degradation in photodiodes may be modeled by the introduction of defects into the depletion region by deep melting transients.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kruer, L. Esterowitz, F. Bartoli, R. Allen, “Thermal Analysis of Laser Damage in Thin-Film Photoconductors,” J. Appl. Phys. 47, 2867–2874 (1976).
    [CrossRef]
  2. F. Bartoli, L. Esterowitz, R. Allen, M. Kruer, “A Generalized Thermal Model for Laser Damage in Infrared Detectors,” J. Appl. Phys. 47, 2875–2881 (1976).
    [CrossRef]
  3. Y. Matsuoka, A. Usami, “Normal Laser Damage of Silicon Solar Cells without Phase Change,” Appl. Phys. Lett. 25, 574–576 (1974).
    [CrossRef]
  4. J. F. Giuliani, C. L. Marquardt, “Electrical Effects in Laser-Damaged Phototransistors,” J. Appl. Phys. 45, 4993–4996 (1974).
    [CrossRef]
  5. D. L. Parker, F. Lin, S. Zhu, D. Zhang, W. A. Porter, “Selective Lifetime Doping in Silicon by Laser Scanning,” IEEE Trans. Electron. Devices ED-29, 1718–1722 (1982).
    [CrossRef]
  6. M. A. Acharekar, “Laser Damage in Silicon Avalanche Photodiode,” Laser Induced Damage in Optical Materials: 1987 (Nat. Inst. Stand. Technol. (US) Spec. Publs. 756, 50 (1988).
    [CrossRef]
  7. M. Kruer, R. Allen, L. Esterowitz, F. Bartoli, “Laser Damage in Silicon Photodiodes,” Opt. Quantum Electron. 8, 453–458 (1976).
    [CrossRef]
  8. S. E. Watkins, C. Zhang, R. M. Walser, M. F. Becker, “Laser-Induced Electrical Parameter Degradation in Silicon Photodiodes,” Twentieth Symposium on Optical Materials for High Power Lasers, Boulder, Colorado, 25–28 Oct. 1988 (proceedings to be published by NIST).
  9. J. Shin, R. M. Walser, M. F. Becker, “Relating Transient Reflectivity to Laser-Induced Damage of Silicon Surfaces,” submitted for publication to IEEE J. Quantum Electron.
  10. M. F. Becker, R. M. Walser, Y. K. Jhee, D. Y. Sheng, “Picosecond Laser Damage Mechanisms at Semiconductor Surfaces,” Proc. Soc. Photo-Opt. Instrum. Eng. 322, 93–98 (1982).
  11. S. P. Fry, R. M. Walser, M. F. Becker, “New Data Regarding the Thermal Laser-Damage Model and the Accumulation Phenomena in Silicon,” Laser Induced Damage in Optical Materials: 1987, Nat. Inst. Stand. Technol. (U.S.) Spec. Publs. 756, 492 (1988).
    [CrossRef]
  12. P. Webb, RCA Electro Optics; personal communication (1988).
  13. Y. K. Jhee, M. F. Becker, R. M. Walser, “Charge Emission and Precursor Accumulation in the Multiple-Pulse Damage Regime of Silicon,” J. Opt. Soc. Am. B 2, 1626–1633 (1985).
    [CrossRef]
  14. A. A. Manenkov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, A. S. Tsaprilov, “Nature of the Cumulative Effect in Laser Damage to Optical Materials,” Sov. J. Quantum Electron. 13, 1580–1583 (1983).
    [CrossRef]
  15. R. J. McIntyre, “Multiplication Noise in Uniform Avalanche Diodes,” IEEE Trans. Electron. Devices ED-13, 164–168 (1966).
    [CrossRef]
  16. A. L. Smirl, T. F. Boggess, I. W. Boyd, S. C. Moss, K. Bohnert, K. Mansour, “Application of Nonlinear Optical Properties and Melt Dynamics of Crystalline Silicon to Optical Limiting of 1 μm Picosecond Radiation,” Opt. Eng. 25, 157–165 (1986).
    [CrossRef]

1986 (1)

A. L. Smirl, T. F. Boggess, I. W. Boyd, S. C. Moss, K. Bohnert, K. Mansour, “Application of Nonlinear Optical Properties and Melt Dynamics of Crystalline Silicon to Optical Limiting of 1 μm Picosecond Radiation,” Opt. Eng. 25, 157–165 (1986).
[CrossRef]

1985 (1)

1983 (1)

A. A. Manenkov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, A. S. Tsaprilov, “Nature of the Cumulative Effect in Laser Damage to Optical Materials,” Sov. J. Quantum Electron. 13, 1580–1583 (1983).
[CrossRef]

1982 (2)

D. L. Parker, F. Lin, S. Zhu, D. Zhang, W. A. Porter, “Selective Lifetime Doping in Silicon by Laser Scanning,” IEEE Trans. Electron. Devices ED-29, 1718–1722 (1982).
[CrossRef]

M. F. Becker, R. M. Walser, Y. K. Jhee, D. Y. Sheng, “Picosecond Laser Damage Mechanisms at Semiconductor Surfaces,” Proc. Soc. Photo-Opt. Instrum. Eng. 322, 93–98 (1982).

1976 (3)

M. Kruer, R. Allen, L. Esterowitz, F. Bartoli, “Laser Damage in Silicon Photodiodes,” Opt. Quantum Electron. 8, 453–458 (1976).
[CrossRef]

M. Kruer, L. Esterowitz, F. Bartoli, R. Allen, “Thermal Analysis of Laser Damage in Thin-Film Photoconductors,” J. Appl. Phys. 47, 2867–2874 (1976).
[CrossRef]

F. Bartoli, L. Esterowitz, R. Allen, M. Kruer, “A Generalized Thermal Model for Laser Damage in Infrared Detectors,” J. Appl. Phys. 47, 2875–2881 (1976).
[CrossRef]

1974 (2)

Y. Matsuoka, A. Usami, “Normal Laser Damage of Silicon Solar Cells without Phase Change,” Appl. Phys. Lett. 25, 574–576 (1974).
[CrossRef]

J. F. Giuliani, C. L. Marquardt, “Electrical Effects in Laser-Damaged Phototransistors,” J. Appl. Phys. 45, 4993–4996 (1974).
[CrossRef]

1966 (1)

R. J. McIntyre, “Multiplication Noise in Uniform Avalanche Diodes,” IEEE Trans. Electron. Devices ED-13, 164–168 (1966).
[CrossRef]

Acharekar, M. A.

M. A. Acharekar, “Laser Damage in Silicon Avalanche Photodiode,” Laser Induced Damage in Optical Materials: 1987 (Nat. Inst. Stand. Technol. (US) Spec. Publs. 756, 50 (1988).
[CrossRef]

Allen, R.

M. Kruer, L. Esterowitz, F. Bartoli, R. Allen, “Thermal Analysis of Laser Damage in Thin-Film Photoconductors,” J. Appl. Phys. 47, 2867–2874 (1976).
[CrossRef]

F. Bartoli, L. Esterowitz, R. Allen, M. Kruer, “A Generalized Thermal Model for Laser Damage in Infrared Detectors,” J. Appl. Phys. 47, 2875–2881 (1976).
[CrossRef]

M. Kruer, R. Allen, L. Esterowitz, F. Bartoli, “Laser Damage in Silicon Photodiodes,” Opt. Quantum Electron. 8, 453–458 (1976).
[CrossRef]

Bartoli, F.

M. Kruer, R. Allen, L. Esterowitz, F. Bartoli, “Laser Damage in Silicon Photodiodes,” Opt. Quantum Electron. 8, 453–458 (1976).
[CrossRef]

F. Bartoli, L. Esterowitz, R. Allen, M. Kruer, “A Generalized Thermal Model for Laser Damage in Infrared Detectors,” J. Appl. Phys. 47, 2875–2881 (1976).
[CrossRef]

M. Kruer, L. Esterowitz, F. Bartoli, R. Allen, “Thermal Analysis of Laser Damage in Thin-Film Photoconductors,” J. Appl. Phys. 47, 2867–2874 (1976).
[CrossRef]

Becker, M. F.

Y. K. Jhee, M. F. Becker, R. M. Walser, “Charge Emission and Precursor Accumulation in the Multiple-Pulse Damage Regime of Silicon,” J. Opt. Soc. Am. B 2, 1626–1633 (1985).
[CrossRef]

M. F. Becker, R. M. Walser, Y. K. Jhee, D. Y. Sheng, “Picosecond Laser Damage Mechanisms at Semiconductor Surfaces,” Proc. Soc. Photo-Opt. Instrum. Eng. 322, 93–98 (1982).

S. P. Fry, R. M. Walser, M. F. Becker, “New Data Regarding the Thermal Laser-Damage Model and the Accumulation Phenomena in Silicon,” Laser Induced Damage in Optical Materials: 1987, Nat. Inst. Stand. Technol. (U.S.) Spec. Publs. 756, 492 (1988).
[CrossRef]

S. E. Watkins, C. Zhang, R. M. Walser, M. F. Becker, “Laser-Induced Electrical Parameter Degradation in Silicon Photodiodes,” Twentieth Symposium on Optical Materials for High Power Lasers, Boulder, Colorado, 25–28 Oct. 1988 (proceedings to be published by NIST).

J. Shin, R. M. Walser, M. F. Becker, “Relating Transient Reflectivity to Laser-Induced Damage of Silicon Surfaces,” submitted for publication to IEEE J. Quantum Electron.

Boggess, T. F.

A. L. Smirl, T. F. Boggess, I. W. Boyd, S. C. Moss, K. Bohnert, K. Mansour, “Application of Nonlinear Optical Properties and Melt Dynamics of Crystalline Silicon to Optical Limiting of 1 μm Picosecond Radiation,” Opt. Eng. 25, 157–165 (1986).
[CrossRef]

Bohnert, K.

A. L. Smirl, T. F. Boggess, I. W. Boyd, S. C. Moss, K. Bohnert, K. Mansour, “Application of Nonlinear Optical Properties and Melt Dynamics of Crystalline Silicon to Optical Limiting of 1 μm Picosecond Radiation,” Opt. Eng. 25, 157–165 (1986).
[CrossRef]

Boyd, I. W.

A. L. Smirl, T. F. Boggess, I. W. Boyd, S. C. Moss, K. Bohnert, K. Mansour, “Application of Nonlinear Optical Properties and Melt Dynamics of Crystalline Silicon to Optical Limiting of 1 μm Picosecond Radiation,” Opt. Eng. 25, 157–165 (1986).
[CrossRef]

Esterowitz, L.

M. Kruer, R. Allen, L. Esterowitz, F. Bartoli, “Laser Damage in Silicon Photodiodes,” Opt. Quantum Electron. 8, 453–458 (1976).
[CrossRef]

F. Bartoli, L. Esterowitz, R. Allen, M. Kruer, “A Generalized Thermal Model for Laser Damage in Infrared Detectors,” J. Appl. Phys. 47, 2875–2881 (1976).
[CrossRef]

M. Kruer, L. Esterowitz, F. Bartoli, R. Allen, “Thermal Analysis of Laser Damage in Thin-Film Photoconductors,” J. Appl. Phys. 47, 2867–2874 (1976).
[CrossRef]

Fry, S. P.

S. P. Fry, R. M. Walser, M. F. Becker, “New Data Regarding the Thermal Laser-Damage Model and the Accumulation Phenomena in Silicon,” Laser Induced Damage in Optical Materials: 1987, Nat. Inst. Stand. Technol. (U.S.) Spec. Publs. 756, 492 (1988).
[CrossRef]

Giuliani, J. F.

J. F. Giuliani, C. L. Marquardt, “Electrical Effects in Laser-Damaged Phototransistors,” J. Appl. Phys. 45, 4993–4996 (1974).
[CrossRef]

Jhee, Y. K.

Y. K. Jhee, M. F. Becker, R. M. Walser, “Charge Emission and Precursor Accumulation in the Multiple-Pulse Damage Regime of Silicon,” J. Opt. Soc. Am. B 2, 1626–1633 (1985).
[CrossRef]

M. F. Becker, R. M. Walser, Y. K. Jhee, D. Y. Sheng, “Picosecond Laser Damage Mechanisms at Semiconductor Surfaces,” Proc. Soc. Photo-Opt. Instrum. Eng. 322, 93–98 (1982).

Kruer, M.

M. Kruer, R. Allen, L. Esterowitz, F. Bartoli, “Laser Damage in Silicon Photodiodes,” Opt. Quantum Electron. 8, 453–458 (1976).
[CrossRef]

M. Kruer, L. Esterowitz, F. Bartoli, R. Allen, “Thermal Analysis of Laser Damage in Thin-Film Photoconductors,” J. Appl. Phys. 47, 2867–2874 (1976).
[CrossRef]

F. Bartoli, L. Esterowitz, R. Allen, M. Kruer, “A Generalized Thermal Model for Laser Damage in Infrared Detectors,” J. Appl. Phys. 47, 2875–2881 (1976).
[CrossRef]

Lin, F.

D. L. Parker, F. Lin, S. Zhu, D. Zhang, W. A. Porter, “Selective Lifetime Doping in Silicon by Laser Scanning,” IEEE Trans. Electron. Devices ED-29, 1718–1722 (1982).
[CrossRef]

Manenkov, A. A.

A. A. Manenkov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, A. S. Tsaprilov, “Nature of the Cumulative Effect in Laser Damage to Optical Materials,” Sov. J. Quantum Electron. 13, 1580–1583 (1983).
[CrossRef]

Mansour, K.

A. L. Smirl, T. F. Boggess, I. W. Boyd, S. C. Moss, K. Bohnert, K. Mansour, “Application of Nonlinear Optical Properties and Melt Dynamics of Crystalline Silicon to Optical Limiting of 1 μm Picosecond Radiation,” Opt. Eng. 25, 157–165 (1986).
[CrossRef]

Marquardt, C. L.

J. F. Giuliani, C. L. Marquardt, “Electrical Effects in Laser-Damaged Phototransistors,” J. Appl. Phys. 45, 4993–4996 (1974).
[CrossRef]

Matsuoka, Y.

Y. Matsuoka, A. Usami, “Normal Laser Damage of Silicon Solar Cells without Phase Change,” Appl. Phys. Lett. 25, 574–576 (1974).
[CrossRef]

Matyushin, G. A.

A. A. Manenkov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, A. S. Tsaprilov, “Nature of the Cumulative Effect in Laser Damage to Optical Materials,” Sov. J. Quantum Electron. 13, 1580–1583 (1983).
[CrossRef]

McIntyre, R. J.

R. J. McIntyre, “Multiplication Noise in Uniform Avalanche Diodes,” IEEE Trans. Electron. Devices ED-13, 164–168 (1966).
[CrossRef]

Moss, S. C.

A. L. Smirl, T. F. Boggess, I. W. Boyd, S. C. Moss, K. Bohnert, K. Mansour, “Application of Nonlinear Optical Properties and Melt Dynamics of Crystalline Silicon to Optical Limiting of 1 μm Picosecond Radiation,” Opt. Eng. 25, 157–165 (1986).
[CrossRef]

Nechitailo, V. S.

A. A. Manenkov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, A. S. Tsaprilov, “Nature of the Cumulative Effect in Laser Damage to Optical Materials,” Sov. J. Quantum Electron. 13, 1580–1583 (1983).
[CrossRef]

Parker, D. L.

D. L. Parker, F. Lin, S. Zhu, D. Zhang, W. A. Porter, “Selective Lifetime Doping in Silicon by Laser Scanning,” IEEE Trans. Electron. Devices ED-29, 1718–1722 (1982).
[CrossRef]

Porter, W. A.

D. L. Parker, F. Lin, S. Zhu, D. Zhang, W. A. Porter, “Selective Lifetime Doping in Silicon by Laser Scanning,” IEEE Trans. Electron. Devices ED-29, 1718–1722 (1982).
[CrossRef]

Prokhorov, A. M.

A. A. Manenkov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, A. S. Tsaprilov, “Nature of the Cumulative Effect in Laser Damage to Optical Materials,” Sov. J. Quantum Electron. 13, 1580–1583 (1983).
[CrossRef]

Sheng, D. Y.

M. F. Becker, R. M. Walser, Y. K. Jhee, D. Y. Sheng, “Picosecond Laser Damage Mechanisms at Semiconductor Surfaces,” Proc. Soc. Photo-Opt. Instrum. Eng. 322, 93–98 (1982).

Shin, J.

J. Shin, R. M. Walser, M. F. Becker, “Relating Transient Reflectivity to Laser-Induced Damage of Silicon Surfaces,” submitted for publication to IEEE J. Quantum Electron.

Smirl, A. L.

A. L. Smirl, T. F. Boggess, I. W. Boyd, S. C. Moss, K. Bohnert, K. Mansour, “Application of Nonlinear Optical Properties and Melt Dynamics of Crystalline Silicon to Optical Limiting of 1 μm Picosecond Radiation,” Opt. Eng. 25, 157–165 (1986).
[CrossRef]

Tsaprilov, A. S.

A. A. Manenkov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, A. S. Tsaprilov, “Nature of the Cumulative Effect in Laser Damage to Optical Materials,” Sov. J. Quantum Electron. 13, 1580–1583 (1983).
[CrossRef]

Usami, A.

Y. Matsuoka, A. Usami, “Normal Laser Damage of Silicon Solar Cells without Phase Change,” Appl. Phys. Lett. 25, 574–576 (1974).
[CrossRef]

Walser, R. M.

Y. K. Jhee, M. F. Becker, R. M. Walser, “Charge Emission and Precursor Accumulation in the Multiple-Pulse Damage Regime of Silicon,” J. Opt. Soc. Am. B 2, 1626–1633 (1985).
[CrossRef]

M. F. Becker, R. M. Walser, Y. K. Jhee, D. Y. Sheng, “Picosecond Laser Damage Mechanisms at Semiconductor Surfaces,” Proc. Soc. Photo-Opt. Instrum. Eng. 322, 93–98 (1982).

S. P. Fry, R. M. Walser, M. F. Becker, “New Data Regarding the Thermal Laser-Damage Model and the Accumulation Phenomena in Silicon,” Laser Induced Damage in Optical Materials: 1987, Nat. Inst. Stand. Technol. (U.S.) Spec. Publs. 756, 492 (1988).
[CrossRef]

J. Shin, R. M. Walser, M. F. Becker, “Relating Transient Reflectivity to Laser-Induced Damage of Silicon Surfaces,” submitted for publication to IEEE J. Quantum Electron.

S. E. Watkins, C. Zhang, R. M. Walser, M. F. Becker, “Laser-Induced Electrical Parameter Degradation in Silicon Photodiodes,” Twentieth Symposium on Optical Materials for High Power Lasers, Boulder, Colorado, 25–28 Oct. 1988 (proceedings to be published by NIST).

Watkins, S. E.

S. E. Watkins, C. Zhang, R. M. Walser, M. F. Becker, “Laser-Induced Electrical Parameter Degradation in Silicon Photodiodes,” Twentieth Symposium on Optical Materials for High Power Lasers, Boulder, Colorado, 25–28 Oct. 1988 (proceedings to be published by NIST).

Webb, P.

P. Webb, RCA Electro Optics; personal communication (1988).

Zhang, C.

S. E. Watkins, C. Zhang, R. M. Walser, M. F. Becker, “Laser-Induced Electrical Parameter Degradation in Silicon Photodiodes,” Twentieth Symposium on Optical Materials for High Power Lasers, Boulder, Colorado, 25–28 Oct. 1988 (proceedings to be published by NIST).

Zhang, D.

D. L. Parker, F. Lin, S. Zhu, D. Zhang, W. A. Porter, “Selective Lifetime Doping in Silicon by Laser Scanning,” IEEE Trans. Electron. Devices ED-29, 1718–1722 (1982).
[CrossRef]

Zhu, S.

D. L. Parker, F. Lin, S. Zhu, D. Zhang, W. A. Porter, “Selective Lifetime Doping in Silicon by Laser Scanning,” IEEE Trans. Electron. Devices ED-29, 1718–1722 (1982).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Matsuoka, A. Usami, “Normal Laser Damage of Silicon Solar Cells without Phase Change,” Appl. Phys. Lett. 25, 574–576 (1974).
[CrossRef]

IEEE Trans. Electron. Devices (2)

D. L. Parker, F. Lin, S. Zhu, D. Zhang, W. A. Porter, “Selective Lifetime Doping in Silicon by Laser Scanning,” IEEE Trans. Electron. Devices ED-29, 1718–1722 (1982).
[CrossRef]

R. J. McIntyre, “Multiplication Noise in Uniform Avalanche Diodes,” IEEE Trans. Electron. Devices ED-13, 164–168 (1966).
[CrossRef]

J. Appl. Phys. (3)

J. F. Giuliani, C. L. Marquardt, “Electrical Effects in Laser-Damaged Phototransistors,” J. Appl. Phys. 45, 4993–4996 (1974).
[CrossRef]

M. Kruer, L. Esterowitz, F. Bartoli, R. Allen, “Thermal Analysis of Laser Damage in Thin-Film Photoconductors,” J. Appl. Phys. 47, 2867–2874 (1976).
[CrossRef]

F. Bartoli, L. Esterowitz, R. Allen, M. Kruer, “A Generalized Thermal Model for Laser Damage in Infrared Detectors,” J. Appl. Phys. 47, 2875–2881 (1976).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Eng. (1)

A. L. Smirl, T. F. Boggess, I. W. Boyd, S. C. Moss, K. Bohnert, K. Mansour, “Application of Nonlinear Optical Properties and Melt Dynamics of Crystalline Silicon to Optical Limiting of 1 μm Picosecond Radiation,” Opt. Eng. 25, 157–165 (1986).
[CrossRef]

Opt. Quantum Electron. (1)

M. Kruer, R. Allen, L. Esterowitz, F. Bartoli, “Laser Damage in Silicon Photodiodes,” Opt. Quantum Electron. 8, 453–458 (1976).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

M. F. Becker, R. M. Walser, Y. K. Jhee, D. Y. Sheng, “Picosecond Laser Damage Mechanisms at Semiconductor Surfaces,” Proc. Soc. Photo-Opt. Instrum. Eng. 322, 93–98 (1982).

Sov. J. Quantum Electron. (1)

A. A. Manenkov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, A. S. Tsaprilov, “Nature of the Cumulative Effect in Laser Damage to Optical Materials,” Sov. J. Quantum Electron. 13, 1580–1583 (1983).
[CrossRef]

Other (5)

S. P. Fry, R. M. Walser, M. F. Becker, “New Data Regarding the Thermal Laser-Damage Model and the Accumulation Phenomena in Silicon,” Laser Induced Damage in Optical Materials: 1987, Nat. Inst. Stand. Technol. (U.S.) Spec. Publs. 756, 492 (1988).
[CrossRef]

P. Webb, RCA Electro Optics; personal communication (1988).

S. E. Watkins, C. Zhang, R. M. Walser, M. F. Becker, “Laser-Induced Electrical Parameter Degradation in Silicon Photodiodes,” Twentieth Symposium on Optical Materials for High Power Lasers, Boulder, Colorado, 25–28 Oct. 1988 (proceedings to be published by NIST).

J. Shin, R. M. Walser, M. F. Becker, “Relating Transient Reflectivity to Laser-Induced Damage of Silicon Surfaces,” submitted for publication to IEEE J. Quantum Electron.

M. A. Acharekar, “Laser Damage in Silicon Avalanche Photodiode,” Laser Induced Damage in Optical Materials: 1987 (Nat. Inst. Stand. Technol. (US) Spec. Publs. 756, 50 (1988).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental configuration for irradiating the photodiodes. The spot radius was ~300 μm. M and BS indicate mirrors and a beam splitter, respectively.

Fig. 2
Fig. 2

Biasing configuration during the irradiation tests. Circuit a was used for the avalanche photodiodes and circuit b for the PIN photodiodes. Id is the active area diode current.

Fig. 3
Fig. 3

Cross section of the RCA avalanche photodiode C30817 which has reach-through structure.

Fig. 4
Fig. 4

Cross section of the EG&G PIN photodiode with guard-ring structure. The SGD and YAG series have this construction. The FFD, FND, and UV series have a similar cross section, but they do not have guard rings and have reversed (p-on-n) structure.

Fig. 5
Fig. 5

Example of a damage probability curve which shows the probability of damage vs the incident fluence. Each data point represents the damage behavior of three to five damage sites. For each test fluence within the shaded transition region, some of the sites were damaged and some were undamaged.

Fig. 6
Fig. 6

Reversed-biased current-voltage characteristics of irradiated RCA avalanche photodiodes. The initial curve is the characteristic before irradiation and degradation. Curves #1–#5 resulted from single-shot irradiation in which the degree of degradation increased as the fluence increased above the threshold value.

Fig. 7
Fig. 7

Damage morphologies of RCA avalanche photodiodes. The detectors were biased at 336 V during irradiation. The current characteristics were not changed for devices a and b. For device c, the leakage current at 336 V increased from 77 nA to 5.5 μA. For device d, the current increased from 72 nA to >20 mA. Nomarski micrographs. (a) 1-shot at 2.1 J/cm2, (b) 1-shot at 5.7 J/cm2, (c) 1-shot at 6.4 J/cm 2, (d) 1-shot at 9.7 J/cm2.

Fig. 8
Fig. 8

Damage morphologies of EG&G PIN photodiodes. The devices are SGD-040 detectors. Nomarski micrographs. (a) N-shot for Device #1, (b) N-shot for Device #2, (c) N-shot for Device #3, (d) 1-shot for Device #4.

Fig. 9
Fig. 9

Reverse-biased current-voltage characteristics of irradiated EG&G SGD-040 PIN photodiodes. The devices were irradiated with multiple pulses. The current is the active-area reverse saturation current. The initial predamage curve and the postdamage curves for device #1, device #2, and device #3 are shown.

Fig. 10
Fig. 10

Reverse-biased capacitance-voltage (CV) characteristics of EG&G SGD-040 device #1 at 10 kHz (curve a) and 1 MHz (curve b). The CV curves for the less severely damaged devices, #2 and #3, were not changed by the laser irradiation.

Tables (5)

Tables Icon

Table I Fluence Thresholds for Surface Melting of Photodiodes

Tables Icon

Table II Electrical Parameter Degradation for RCA Avalanche Photodiodes

Tables Icon

Table III Degradation Fluences Corresponding to Different Surface Diffusion Depths

Tables Icon

Table IV Electrical Parameter Degradation for EG&G SGD-040 Photodlodes

Tables Icon

Table V Electrical Parameter Degradation for Biased PIN Photodiodes

Metrics