Abstract

Amplitude distributions produced by a novel reflective membrane optical scintillator (RMOS) showed excellent statistical agreement with experimental field data taken from actual atmospheric measurements. Laboratory simulated atmospheric turbulence using RMOS was found to have a log–normal amplitude distribution. This included two test cases representing subsets of real weak turbulence and moderate turbulence regimes.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See V. E. Zuev, Laser Beams in the Atmosphere [Consultants Bureau (Plenum), New York, 1982] and the references therein.
    [CrossRef]
  2. N. Menyuk, D. K. Killinger, C. R. Menyuk, “Signal Averaging Limitations in Heterodyne and Direct-Detection Laser Remote Sensing Measurements,” in Optical and Laser Remote Sensing, A. Modrian, D. K. Killinger, Eds. (Springer-Verlag, Berlin, 1983).
  3. A. G. Borovoy, G. YA. Patrushev, A. I. Petrov, “Laser Beam Propagation through the Turbulent Atmosphere with Precipitation,” Appl. Opt. 27, 3704–3714 (1988).
    [CrossRef] [PubMed]
  4. J. H. Churnside, R. J. Lataitis, R. S. Lawrence, “Localized Measurements of Refractive Turbulence Using Spatial Filtering of Scintillation,” Appl. Opt. 27, 2199–2213 (1988).
    [CrossRef] [PubMed]
  5. E. L. Andreas, “Atmospheric Stability from Scintillation Measurements,” Appl. Opt. 27, 2241–2246 (1988).
    [CrossRef] [PubMed]
  6. U. Merlo, E. Fionda, J. Wang, “Ground Level Refractivity and Scintillation in Space–Earth Links,” Appl. Opt. 27, 2247–2252 (1988).
    [CrossRef] [PubMed]
  7. R. J. Hill, “Comparison of Scintillation Methods for Measuring the Inner Scale of Turbulence,” Appl. Opt. 27, 2187–2193 (1988).
    [CrossRef] [PubMed]
  8. J. H. Churnside, R. G. Frehlich, “Probability Density Function Measurements of Optical Scintillations in the Atmosphere,” Proc. Soc. Photo-Opt. Instrum. Eng. 926, 172–178 (1988).
  9. R. G. Frehlich, J. H. Churnside, “Probability Density Function for Estimates of the Moments of Laser Scintillation,” Proc. Soc. Photo-Opt. Instrum. Eng. 926, 31–38 (1988).
  10. L. R. Bissonnette, “Atmospheric Scintillation of Optical and Infrared Waves: A Laboratory Simulation,” Appl. Opt. 16, 2242–2251 (1977).
    [CrossRef] [PubMed]
  11. R. A. Dudnik, A. E. Ekimov, “Noncontact Measurement of Vibrating Membrane and Plate Parameters,” Izv. Vyss. Uchebn. Zaved. Radiofiz. (USSR) 26, 110–113 (1983).
  12. W. Rdzanek, “Acoustical Impedance of a Circular Membrane Vibrating Under the Influence of a Force with a Uniform Surface Distribution,” Archit. Acoust. Vol. 11, 39–51 (1986).
  13. A. Dobrucki, C. A. Rowskowski, “Measurement of the Visco-elastic Constants of the Cellulose Used for Loudspeaker Membrane and Their Effect Upon the Electro-Acoustic Parameters of the Loudspeaker,” Archit. Acoust. 2, 177–178 (1977).
  14. J. F. Valley, R. E. Slusher, “Acoustic Wave Calibration for CO2 Laser Scattering Experiments,” Rev. Sci. Instrum. 54, 1157–1162 (1983).
    [CrossRef]
  15. O. Kafri, Y. B. Band, T. Chin, D. F. Heller, J. C. Walling, “Real-Time Moire Vibration Analysis of Diffusive Objects,” Appl. Opt. 24, 240–242 (1985).
    [CrossRef] [PubMed]

1988 (7)

1986 (1)

W. Rdzanek, “Acoustical Impedance of a Circular Membrane Vibrating Under the Influence of a Force with a Uniform Surface Distribution,” Archit. Acoust. Vol. 11, 39–51 (1986).

1985 (1)

1983 (2)

R. A. Dudnik, A. E. Ekimov, “Noncontact Measurement of Vibrating Membrane and Plate Parameters,” Izv. Vyss. Uchebn. Zaved. Radiofiz. (USSR) 26, 110–113 (1983).

J. F. Valley, R. E. Slusher, “Acoustic Wave Calibration for CO2 Laser Scattering Experiments,” Rev. Sci. Instrum. 54, 1157–1162 (1983).
[CrossRef]

1977 (2)

A. Dobrucki, C. A. Rowskowski, “Measurement of the Visco-elastic Constants of the Cellulose Used for Loudspeaker Membrane and Their Effect Upon the Electro-Acoustic Parameters of the Loudspeaker,” Archit. Acoust. 2, 177–178 (1977).

L. R. Bissonnette, “Atmospheric Scintillation of Optical and Infrared Waves: A Laboratory Simulation,” Appl. Opt. 16, 2242–2251 (1977).
[CrossRef] [PubMed]

Andreas, E. L.

Band, Y. B.

Bissonnette, L. R.

Borovoy, A. G.

Chin, T.

Churnside, J. H.

J. H. Churnside, R. G. Frehlich, “Probability Density Function Measurements of Optical Scintillations in the Atmosphere,” Proc. Soc. Photo-Opt. Instrum. Eng. 926, 172–178 (1988).

R. G. Frehlich, J. H. Churnside, “Probability Density Function for Estimates of the Moments of Laser Scintillation,” Proc. Soc. Photo-Opt. Instrum. Eng. 926, 31–38 (1988).

J. H. Churnside, R. J. Lataitis, R. S. Lawrence, “Localized Measurements of Refractive Turbulence Using Spatial Filtering of Scintillation,” Appl. Opt. 27, 2199–2213 (1988).
[CrossRef] [PubMed]

Dobrucki, A.

A. Dobrucki, C. A. Rowskowski, “Measurement of the Visco-elastic Constants of the Cellulose Used for Loudspeaker Membrane and Their Effect Upon the Electro-Acoustic Parameters of the Loudspeaker,” Archit. Acoust. 2, 177–178 (1977).

Dudnik, R. A.

R. A. Dudnik, A. E. Ekimov, “Noncontact Measurement of Vibrating Membrane and Plate Parameters,” Izv. Vyss. Uchebn. Zaved. Radiofiz. (USSR) 26, 110–113 (1983).

Ekimov, A. E.

R. A. Dudnik, A. E. Ekimov, “Noncontact Measurement of Vibrating Membrane and Plate Parameters,” Izv. Vyss. Uchebn. Zaved. Radiofiz. (USSR) 26, 110–113 (1983).

Fionda, E.

Frehlich, R. G.

J. H. Churnside, R. G. Frehlich, “Probability Density Function Measurements of Optical Scintillations in the Atmosphere,” Proc. Soc. Photo-Opt. Instrum. Eng. 926, 172–178 (1988).

R. G. Frehlich, J. H. Churnside, “Probability Density Function for Estimates of the Moments of Laser Scintillation,” Proc. Soc. Photo-Opt. Instrum. Eng. 926, 31–38 (1988).

Heller, D. F.

Hill, R. J.

Kafri, O.

Killinger, D. K.

N. Menyuk, D. K. Killinger, C. R. Menyuk, “Signal Averaging Limitations in Heterodyne and Direct-Detection Laser Remote Sensing Measurements,” in Optical and Laser Remote Sensing, A. Modrian, D. K. Killinger, Eds. (Springer-Verlag, Berlin, 1983).

Lataitis, R. J.

Lawrence, R. S.

Menyuk, C. R.

N. Menyuk, D. K. Killinger, C. R. Menyuk, “Signal Averaging Limitations in Heterodyne and Direct-Detection Laser Remote Sensing Measurements,” in Optical and Laser Remote Sensing, A. Modrian, D. K. Killinger, Eds. (Springer-Verlag, Berlin, 1983).

Menyuk, N.

N. Menyuk, D. K. Killinger, C. R. Menyuk, “Signal Averaging Limitations in Heterodyne and Direct-Detection Laser Remote Sensing Measurements,” in Optical and Laser Remote Sensing, A. Modrian, D. K. Killinger, Eds. (Springer-Verlag, Berlin, 1983).

Merlo, U.

Patrushev, G. YA.

Petrov, A. I.

Rdzanek, W.

W. Rdzanek, “Acoustical Impedance of a Circular Membrane Vibrating Under the Influence of a Force with a Uniform Surface Distribution,” Archit. Acoust. Vol. 11, 39–51 (1986).

Rowskowski, C. A.

A. Dobrucki, C. A. Rowskowski, “Measurement of the Visco-elastic Constants of the Cellulose Used for Loudspeaker Membrane and Their Effect Upon the Electro-Acoustic Parameters of the Loudspeaker,” Archit. Acoust. 2, 177–178 (1977).

Slusher, R. E.

J. F. Valley, R. E. Slusher, “Acoustic Wave Calibration for CO2 Laser Scattering Experiments,” Rev. Sci. Instrum. 54, 1157–1162 (1983).
[CrossRef]

Valley, J. F.

J. F. Valley, R. E. Slusher, “Acoustic Wave Calibration for CO2 Laser Scattering Experiments,” Rev. Sci. Instrum. 54, 1157–1162 (1983).
[CrossRef]

Walling, J. C.

Wang, J.

Zuev, V. E.

See V. E. Zuev, Laser Beams in the Atmosphere [Consultants Bureau (Plenum), New York, 1982] and the references therein.
[CrossRef]

Appl. Opt. (7)

Archit. Acoust. (2)

W. Rdzanek, “Acoustical Impedance of a Circular Membrane Vibrating Under the Influence of a Force with a Uniform Surface Distribution,” Archit. Acoust. Vol. 11, 39–51 (1986).

A. Dobrucki, C. A. Rowskowski, “Measurement of the Visco-elastic Constants of the Cellulose Used for Loudspeaker Membrane and Their Effect Upon the Electro-Acoustic Parameters of the Loudspeaker,” Archit. Acoust. 2, 177–178 (1977).

Izv. Vyss. Uchebn. Zaved. Radiofiz. (USSR) (1)

R. A. Dudnik, A. E. Ekimov, “Noncontact Measurement of Vibrating Membrane and Plate Parameters,” Izv. Vyss. Uchebn. Zaved. Radiofiz. (USSR) 26, 110–113 (1983).

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

J. H. Churnside, R. G. Frehlich, “Probability Density Function Measurements of Optical Scintillations in the Atmosphere,” Proc. Soc. Photo-Opt. Instrum. Eng. 926, 172–178 (1988).

R. G. Frehlich, J. H. Churnside, “Probability Density Function for Estimates of the Moments of Laser Scintillation,” Proc. Soc. Photo-Opt. Instrum. Eng. 926, 31–38 (1988).

Rev. Sci. Instrum. (1)

J. F. Valley, R. E. Slusher, “Acoustic Wave Calibration for CO2 Laser Scattering Experiments,” Rev. Sci. Instrum. 54, 1157–1162 (1983).
[CrossRef]

Other (2)

See V. E. Zuev, Laser Beams in the Atmosphere [Consultants Bureau (Plenum), New York, 1982] and the references therein.
[CrossRef]

N. Menyuk, D. K. Killinger, C. R. Menyuk, “Signal Averaging Limitations in Heterodyne and Direct-Detection Laser Remote Sensing Measurements,” in Optical and Laser Remote Sensing, A. Modrian, D. K. Killinger, Eds. (Springer-Verlag, Berlin, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Diagram of the reflective membrane optical scintillator.

Fig. 2
Fig. 2

Effect of vibrational excitation on light reflected from RMOS membrane.

Fig. 3
Fig. 3

Reflected light patterns for low and high frequency vibrational modes of RMOS membrane.

Fig. 4
Fig. 4

Relation of vibrational mode frequency to cell size for the membrane.

Fig. 5
Fig. 5

Effect of scintillation on light beam propagation.

Fig. 6
Fig. 6

Configuration of laboratory setup for RMOS.

Fig. 7
Fig. 7

Sample output of RMOS detector showing fluctuations about zero-level (no vibration of membrane).

Fig. 8
Fig. 8

Result of digitization of output signal like Fig. 7, for (a) ac coupling, and (b) dc coupling.

Fig. 9
Fig. 9

Probability vs log of ratio of intensity to mean intensity for RMOS output. Solid curve is best-fit log-normal distribution.

Fig. 10
Fig. 10

Probability vs log of intensity ratio (as in Fig. 9) for two different scintillation conditions, (a) weak turbulence, (b) moderate to strong turbulence.

Fig. 11
Fig. 11

Variance in output signal intensity for a typical set of RMOS operating parameters.

Fig. 12
Fig. 12

Effect of rms voltage amplitude on variance of noise spectrum.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

X i = ln { I i / I o } = ln { I bin + I min I o } .
Y i = P i / Δ X i ,
P i = N i i = 1 n N i ,
Y i = N i i = 1 n N i ln { I bin + I min + Δ I I bin + I min } .
σ 2 = i = 1 n N i { ln ( I i / I o ) } 2 i = 1 n N i [ i = 1 n N i ln ( I i / I o ) i = 1 n N i ] 2 ,

Metrics