Abstract

This paper presents an original method of IR diode laser spectra sampling, where the sampling is defined by the fringe pattern of a confocal etalon. The laser wave number is scanned between two peaks of the Airy type function and is temporarily locked to each peak, allowing integration of the spectroscopic data on another optoelectronic channel. This method is well adapted to broad absorption line studies, provided the line can afford the relatively large sample spacing (0.01 cm−1). A monitoring experiment for both pressure and HBr concentration in halogen bulbs is presented to show an example of the method’s use.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Connes, “L’etalon de Fabry-Perot Spherique,” J. Phys. Radium 19, 262–267 (1958).
    [CrossRef]
  2. D. E. Jennings, “Calibration of Diode Laser Spectra Using a Confocal Etalon,” Appl. Opt. 23, 1299–1301 (1984).
    [CrossRef] [PubMed]
  3. H. J. Clar, M. Reich, R. Schieder, G. Winnewisser, K. M. T. Yamada, “Diode Laser Spectrum of the ν6 Band of CH3I Using a Novel Etalon as a Calibration Scale,” J. Mol. Spectrosc. 112, 447–458 (1985).
    [CrossRef]
  4. M. Reich, R. Schieder, H. J. Clar, G. Winnewisser, “Internally Coupled Fabry-Perot Interferometer for High Precision Wavelength Control of Tunable Diode Lasers,” Appl. Opt. 25, 130–135 (1986).
    [CrossRef] [PubMed]
  5. T. Giesen, M. Harter, R. Schieder, G. Winnewisser, K. M. T. Yamada, “High Resolution Spectroscopy Using a Stabilized Diode Laser: The 2 ν9 Band of HNO3,” Z. Naturforsch. 43a, 402–406 (1988).
  6. C. Nicolas, A. W. Mantz, “Infrared Tunable Diode Laser Control: Frequency Stabilization and Digitization of Spectra Leading to High Sensitivity and Accurate Frequency Scale,” Appl. Opt. 28, 4525–4532 (1989).
    [CrossRef] [PubMed]
  7. H. J. Clar, R. Schieder, M. Reich, G. Winnewisser, “High Precision Frequency Calibration of Tunable Diode Lasers Stabilized on an Internally Coupled Fabry-Perot Interferometer,” Appl. Opt. 28, 1648–1656 (1989).
    [CrossRef] [PubMed]
  8. H. J. Clar, R. Schieder, G. Winnewisser, K. M. T. Yamada, “Pressure Broadening and Lineshifts in the ν2 Band of NH3,” J. Mol. Struct. 190, 447–456 (1988).
    [CrossRef]
  9. Nitrocellulose presents absorption bands in the IR at 1280 and 1650 cm−1. If one works in these spectral regions, it might be preferable to use an uncoated KBr flat as a beam splitter for better performance.
  10. The PIR is an electronic interface that sums two signals, one proportional to the input signal, the other an integration of the input signal. This regulator is a key element in the diode laser frequency stabilization experiments and particularly for fringe triggered data collection.
  11. Specifications given by the manufacturer, Burleigh Instrument, Inc., Burleigh Park, Fishers, NY 14453.
  12. D. L. Wall, E. F. Pearson, A. W. Mantz, “Tunable Diode Lasers for Industrial Analysis and Monitoring Applications,” in Proceedings, Fourth World Congress of International Federation of Automatic Control (Ghent, Belgium, 1980), pp. 295–300.
  13. L. S. Rothman et al., “The HITRAN Database: 1986 Edition,” Appl. Opt. 26, 4058–4097 (1987).
    [CrossRef] [PubMed]
  14. J. O’Connell, Laser Photonics, Analytics Division; private communication.

1989 (2)

1988 (2)

T. Giesen, M. Harter, R. Schieder, G. Winnewisser, K. M. T. Yamada, “High Resolution Spectroscopy Using a Stabilized Diode Laser: The 2 ν9 Band of HNO3,” Z. Naturforsch. 43a, 402–406 (1988).

H. J. Clar, R. Schieder, G. Winnewisser, K. M. T. Yamada, “Pressure Broadening and Lineshifts in the ν2 Band of NH3,” J. Mol. Struct. 190, 447–456 (1988).
[CrossRef]

1987 (1)

1986 (1)

1985 (1)

H. J. Clar, M. Reich, R. Schieder, G. Winnewisser, K. M. T. Yamada, “Diode Laser Spectrum of the ν6 Band of CH3I Using a Novel Etalon as a Calibration Scale,” J. Mol. Spectrosc. 112, 447–458 (1985).
[CrossRef]

1984 (1)

1958 (1)

P. Connes, “L’etalon de Fabry-Perot Spherique,” J. Phys. Radium 19, 262–267 (1958).
[CrossRef]

Clar, H. J.

H. J. Clar, R. Schieder, M. Reich, G. Winnewisser, “High Precision Frequency Calibration of Tunable Diode Lasers Stabilized on an Internally Coupled Fabry-Perot Interferometer,” Appl. Opt. 28, 1648–1656 (1989).
[CrossRef] [PubMed]

H. J. Clar, R. Schieder, G. Winnewisser, K. M. T. Yamada, “Pressure Broadening and Lineshifts in the ν2 Band of NH3,” J. Mol. Struct. 190, 447–456 (1988).
[CrossRef]

M. Reich, R. Schieder, H. J. Clar, G. Winnewisser, “Internally Coupled Fabry-Perot Interferometer for High Precision Wavelength Control of Tunable Diode Lasers,” Appl. Opt. 25, 130–135 (1986).
[CrossRef] [PubMed]

H. J. Clar, M. Reich, R. Schieder, G. Winnewisser, K. M. T. Yamada, “Diode Laser Spectrum of the ν6 Band of CH3I Using a Novel Etalon as a Calibration Scale,” J. Mol. Spectrosc. 112, 447–458 (1985).
[CrossRef]

Connes, P.

P. Connes, “L’etalon de Fabry-Perot Spherique,” J. Phys. Radium 19, 262–267 (1958).
[CrossRef]

Giesen, T.

T. Giesen, M. Harter, R. Schieder, G. Winnewisser, K. M. T. Yamada, “High Resolution Spectroscopy Using a Stabilized Diode Laser: The 2 ν9 Band of HNO3,” Z. Naturforsch. 43a, 402–406 (1988).

Harter, M.

T. Giesen, M. Harter, R. Schieder, G. Winnewisser, K. M. T. Yamada, “High Resolution Spectroscopy Using a Stabilized Diode Laser: The 2 ν9 Band of HNO3,” Z. Naturforsch. 43a, 402–406 (1988).

Jennings, D. E.

Mantz, A. W.

C. Nicolas, A. W. Mantz, “Infrared Tunable Diode Laser Control: Frequency Stabilization and Digitization of Spectra Leading to High Sensitivity and Accurate Frequency Scale,” Appl. Opt. 28, 4525–4532 (1989).
[CrossRef] [PubMed]

D. L. Wall, E. F. Pearson, A. W. Mantz, “Tunable Diode Lasers for Industrial Analysis and Monitoring Applications,” in Proceedings, Fourth World Congress of International Federation of Automatic Control (Ghent, Belgium, 1980), pp. 295–300.

Nicolas, C.

O’Connell, J.

J. O’Connell, Laser Photonics, Analytics Division; private communication.

Pearson, E. F.

D. L. Wall, E. F. Pearson, A. W. Mantz, “Tunable Diode Lasers for Industrial Analysis and Monitoring Applications,” in Proceedings, Fourth World Congress of International Federation of Automatic Control (Ghent, Belgium, 1980), pp. 295–300.

Reich, M.

Rothman, L. S.

Schieder, R.

H. J. Clar, R. Schieder, M. Reich, G. Winnewisser, “High Precision Frequency Calibration of Tunable Diode Lasers Stabilized on an Internally Coupled Fabry-Perot Interferometer,” Appl. Opt. 28, 1648–1656 (1989).
[CrossRef] [PubMed]

T. Giesen, M. Harter, R. Schieder, G. Winnewisser, K. M. T. Yamada, “High Resolution Spectroscopy Using a Stabilized Diode Laser: The 2 ν9 Band of HNO3,” Z. Naturforsch. 43a, 402–406 (1988).

H. J. Clar, R. Schieder, G. Winnewisser, K. M. T. Yamada, “Pressure Broadening and Lineshifts in the ν2 Band of NH3,” J. Mol. Struct. 190, 447–456 (1988).
[CrossRef]

M. Reich, R. Schieder, H. J. Clar, G. Winnewisser, “Internally Coupled Fabry-Perot Interferometer for High Precision Wavelength Control of Tunable Diode Lasers,” Appl. Opt. 25, 130–135 (1986).
[CrossRef] [PubMed]

H. J. Clar, M. Reich, R. Schieder, G. Winnewisser, K. M. T. Yamada, “Diode Laser Spectrum of the ν6 Band of CH3I Using a Novel Etalon as a Calibration Scale,” J. Mol. Spectrosc. 112, 447–458 (1985).
[CrossRef]

Wall, D. L.

D. L. Wall, E. F. Pearson, A. W. Mantz, “Tunable Diode Lasers for Industrial Analysis and Monitoring Applications,” in Proceedings, Fourth World Congress of International Federation of Automatic Control (Ghent, Belgium, 1980), pp. 295–300.

Winnewisser, G.

H. J. Clar, R. Schieder, M. Reich, G. Winnewisser, “High Precision Frequency Calibration of Tunable Diode Lasers Stabilized on an Internally Coupled Fabry-Perot Interferometer,” Appl. Opt. 28, 1648–1656 (1989).
[CrossRef] [PubMed]

T. Giesen, M. Harter, R. Schieder, G. Winnewisser, K. M. T. Yamada, “High Resolution Spectroscopy Using a Stabilized Diode Laser: The 2 ν9 Band of HNO3,” Z. Naturforsch. 43a, 402–406 (1988).

H. J. Clar, R. Schieder, G. Winnewisser, K. M. T. Yamada, “Pressure Broadening and Lineshifts in the ν2 Band of NH3,” J. Mol. Struct. 190, 447–456 (1988).
[CrossRef]

M. Reich, R. Schieder, H. J. Clar, G. Winnewisser, “Internally Coupled Fabry-Perot Interferometer for High Precision Wavelength Control of Tunable Diode Lasers,” Appl. Opt. 25, 130–135 (1986).
[CrossRef] [PubMed]

H. J. Clar, M. Reich, R. Schieder, G. Winnewisser, K. M. T. Yamada, “Diode Laser Spectrum of the ν6 Band of CH3I Using a Novel Etalon as a Calibration Scale,” J. Mol. Spectrosc. 112, 447–458 (1985).
[CrossRef]

Yamada, K. M. T.

T. Giesen, M. Harter, R. Schieder, G. Winnewisser, K. M. T. Yamada, “High Resolution Spectroscopy Using a Stabilized Diode Laser: The 2 ν9 Band of HNO3,” Z. Naturforsch. 43a, 402–406 (1988).

H. J. Clar, R. Schieder, G. Winnewisser, K. M. T. Yamada, “Pressure Broadening and Lineshifts in the ν2 Band of NH3,” J. Mol. Struct. 190, 447–456 (1988).
[CrossRef]

H. J. Clar, M. Reich, R. Schieder, G. Winnewisser, K. M. T. Yamada, “Diode Laser Spectrum of the ν6 Band of CH3I Using a Novel Etalon as a Calibration Scale,” J. Mol. Spectrosc. 112, 447–458 (1985).
[CrossRef]

Appl. Opt. (5)

J. Mol. Spectrosc. (1)

H. J. Clar, M. Reich, R. Schieder, G. Winnewisser, K. M. T. Yamada, “Diode Laser Spectrum of the ν6 Band of CH3I Using a Novel Etalon as a Calibration Scale,” J. Mol. Spectrosc. 112, 447–458 (1985).
[CrossRef]

J. Mol. Struct. (1)

H. J. Clar, R. Schieder, G. Winnewisser, K. M. T. Yamada, “Pressure Broadening and Lineshifts in the ν2 Band of NH3,” J. Mol. Struct. 190, 447–456 (1988).
[CrossRef]

J. Phys. Radium (1)

P. Connes, “L’etalon de Fabry-Perot Spherique,” J. Phys. Radium 19, 262–267 (1958).
[CrossRef]

Z. Naturforsch. (1)

T. Giesen, M. Harter, R. Schieder, G. Winnewisser, K. M. T. Yamada, “High Resolution Spectroscopy Using a Stabilized Diode Laser: The 2 ν9 Band of HNO3,” Z. Naturforsch. 43a, 402–406 (1988).

Other (5)

J. O’Connell, Laser Photonics, Analytics Division; private communication.

Nitrocellulose presents absorption bands in the IR at 1280 and 1650 cm−1. If one works in these spectral regions, it might be preferable to use an uncoated KBr flat as a beam splitter for better performance.

The PIR is an electronic interface that sums two signals, one proportional to the input signal, the other an integration of the input signal. This regulator is a key element in the diode laser frequency stabilization experiments and particularly for fringe triggered data collection.

Specifications given by the manufacturer, Burleigh Instrument, Inc., Burleigh Park, Fishers, NY 14453.

D. L. Wall, E. F. Pearson, A. W. Mantz, “Tunable Diode Lasers for Industrial Analysis and Monitoring Applications,” in Proceedings, Fourth World Congress of International Federation of Automatic Control (Ghent, Belgium, 1980), pp. 295–300.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Diagram of the IR fringe triggering digitization experiment. The software commands the circuit connection at the PIR input and interrupts the digital ramp each time D(f) crosses zero, as detected at ADC1. This interruption lasts as long as the signal is integrated by LIA2 and converted by ADC2 on the absorption channel.

Fig. 2
Fig. 2

Typical transmission fringe pattern (upper trace) of an internally coupled Fabry-Perot interferometer and its first derivative D(f) (lower trace) when the laser wave number f is scanned. The cavity length is 25 cm, therefore, the fringe spacing is 0.01 cm−1. Each portion encircled is used as an error signal for temporarily frequency locking the diode laser.

Fig. 3
Fig. 3

Digital absorbance plots of HBr R(5) doublet, as detected in two different bulbs. The theoretical fitting functions are superimposed. The measured HBr concentrations and the total pressures are 0.42 (2) % and 3.8 (2) atm for the upper trace, and 0.036 (5) %and 3.1 (5) atm for the lower trace (the optical path length is assumed to be 1 cm).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Abs ( f ) = a + b f + A P 2 L C T i = 1 2 G i S i ( G i P ) 2 + ( f - f i ) 2 ,

Metrics