Abstract

Utilizing high resolution spectra, the absorption efficiency for six Nd laser materials was calculated as functions of the effective blackbody temperature of the lamp and laser crystal size. The six materials were Nd:YAG, Nd:YLF, Nd:Q-98 Glass, Nd:YVO4, Nd:BEL, and Nd:Cr:GSGG. Under the guidelines of this study, Nd:Cr:GSGG’s absorption efficiency is twice the absorption efficiency of any of the other laser materials.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Koechner, Solid-State Laser Engineering, (Springer-Verlag, New York, 1976).
  2. D. Pruss, G. Huber, A. Beimososki, “Efficient Cr3+ Sensitized Nd3+:GdScGa-Garnet Laser at 1.06 μm,” Appl. Phys. B. 28, 355–358 (1982).
    [CrossRef]
  3. L. F. Johnson, J. E. Geusic, L. G. von Ulitert, “Efficient, High-Power Coherent Emission from Ho3+ Ions in Yttrium Alluminum Garnet, Assisted by Energy Transfer,” Appl. Phys. Lett. 8, 200–202 (1966).
    [CrossRef]
  4. J. E. Geusic, H. M. Macros, L. G. van Ulitert, “Laser Oscillations in Nd-Doped Yttrium Aluminum, Yttrium Gallium, and Gadolinium Garnets,” Appl. Phys. Lett. 4, 182–184 (1964).
    [CrossRef]
  5. A. L. Harmer, A. Linz, D. R. Gabbe, “Fluorescence of Nd3+ in Lithium Yttrium Fluoride,” J. Phys. Cen. Sol. 30, 1483–1487 (1969).
    [CrossRef]
  6. B. I. Denker, A. A. Izyneev, I. I. Kuratec, Yu. V. Tsvetkov, A. V. Shestakov, “Lasing in Phosphate Glasses with High Neodymium Ion Concentrations Under Pumping with Light-Emitting Diodes,” Sov. J. Quantum Electron. 10, 1167–1168 (1980).
    [CrossRef]
  7. R. A. Fields, M. Birnbaum, C. L. Fincher, “Highly Efficient Nd:YOV4 Diode-Laser End-Pumped Laser,” Appl. Phys. Lett. 51, 1885–1886 (1987).
    [CrossRef]
  8. T. S. Lomheim, L. G. DeShazer, “Optical Absorption Intensities of Trivalent Neodymium in the Uniaxial Crystal Yttrium Ortho-vanadate,” J. Appl. Phys. 47, 5517–5522 (1976).
  9. H. P. Jenssen, R. F. Begley, R. Webb, R. C. Morris, “Spectroscopic Properties and Laser Performance of Nd3+ in Lanthanum Beryllate,” J. Appl. Phys. 47, 1496–1500 (1976).
    [CrossRef]
  10. N. P. Barnes, D. J. Gettemy, “Temperature Variation of the Refractive Indices of Yttrium Lithium Fluoride,” J. Opt. Soc. Am. 70, 1244–1247 (1980).
    [CrossRef]
  11. T. S. Lomheim, L. G. DeShazer, “Optical Absorption Intensities of Trivalent Neodymium in the Uniaxial Crystal Yttrium Orthovanadate,” J. Appl. Phys. 49, 5517–5522 (1978).
    [CrossRef]
  12. N. P. Barnes, D. J. Gettemy, L. Esterowitz, R. E. Allen, “Comparison of Nd 1.06 and 1.33 μm Operation in Various Hosts,” IEEE J. Quant. Electron. QE-23, 1434–1451 (1987).
    [CrossRef]
  13. W. Wolfe, G. Zissis, The Infrared Handbook (Office of Naval Research, Wash D.C., 1978) pp. 3–34 to 3–39.

1987

R. A. Fields, M. Birnbaum, C. L. Fincher, “Highly Efficient Nd:YOV4 Diode-Laser End-Pumped Laser,” Appl. Phys. Lett. 51, 1885–1886 (1987).
[CrossRef]

N. P. Barnes, D. J. Gettemy, L. Esterowitz, R. E. Allen, “Comparison of Nd 1.06 and 1.33 μm Operation in Various Hosts,” IEEE J. Quant. Electron. QE-23, 1434–1451 (1987).
[CrossRef]

1982

D. Pruss, G. Huber, A. Beimososki, “Efficient Cr3+ Sensitized Nd3+:GdScGa-Garnet Laser at 1.06 μm,” Appl. Phys. B. 28, 355–358 (1982).
[CrossRef]

1980

B. I. Denker, A. A. Izyneev, I. I. Kuratec, Yu. V. Tsvetkov, A. V. Shestakov, “Lasing in Phosphate Glasses with High Neodymium Ion Concentrations Under Pumping with Light-Emitting Diodes,” Sov. J. Quantum Electron. 10, 1167–1168 (1980).
[CrossRef]

N. P. Barnes, D. J. Gettemy, “Temperature Variation of the Refractive Indices of Yttrium Lithium Fluoride,” J. Opt. Soc. Am. 70, 1244–1247 (1980).
[CrossRef]

1978

T. S. Lomheim, L. G. DeShazer, “Optical Absorption Intensities of Trivalent Neodymium in the Uniaxial Crystal Yttrium Orthovanadate,” J. Appl. Phys. 49, 5517–5522 (1978).
[CrossRef]

1976

T. S. Lomheim, L. G. DeShazer, “Optical Absorption Intensities of Trivalent Neodymium in the Uniaxial Crystal Yttrium Ortho-vanadate,” J. Appl. Phys. 47, 5517–5522 (1976).

H. P. Jenssen, R. F. Begley, R. Webb, R. C. Morris, “Spectroscopic Properties and Laser Performance of Nd3+ in Lanthanum Beryllate,” J. Appl. Phys. 47, 1496–1500 (1976).
[CrossRef]

1969

A. L. Harmer, A. Linz, D. R. Gabbe, “Fluorescence of Nd3+ in Lithium Yttrium Fluoride,” J. Phys. Cen. Sol. 30, 1483–1487 (1969).
[CrossRef]

1966

L. F. Johnson, J. E. Geusic, L. G. von Ulitert, “Efficient, High-Power Coherent Emission from Ho3+ Ions in Yttrium Alluminum Garnet, Assisted by Energy Transfer,” Appl. Phys. Lett. 8, 200–202 (1966).
[CrossRef]

1964

J. E. Geusic, H. M. Macros, L. G. van Ulitert, “Laser Oscillations in Nd-Doped Yttrium Aluminum, Yttrium Gallium, and Gadolinium Garnets,” Appl. Phys. Lett. 4, 182–184 (1964).
[CrossRef]

Allen, R. E.

N. P. Barnes, D. J. Gettemy, L. Esterowitz, R. E. Allen, “Comparison of Nd 1.06 and 1.33 μm Operation in Various Hosts,” IEEE J. Quant. Electron. QE-23, 1434–1451 (1987).
[CrossRef]

Barnes, N. P.

N. P. Barnes, D. J. Gettemy, L. Esterowitz, R. E. Allen, “Comparison of Nd 1.06 and 1.33 μm Operation in Various Hosts,” IEEE J. Quant. Electron. QE-23, 1434–1451 (1987).
[CrossRef]

N. P. Barnes, D. J. Gettemy, “Temperature Variation of the Refractive Indices of Yttrium Lithium Fluoride,” J. Opt. Soc. Am. 70, 1244–1247 (1980).
[CrossRef]

Begley, R. F.

H. P. Jenssen, R. F. Begley, R. Webb, R. C. Morris, “Spectroscopic Properties and Laser Performance of Nd3+ in Lanthanum Beryllate,” J. Appl. Phys. 47, 1496–1500 (1976).
[CrossRef]

Beimososki, A.

D. Pruss, G. Huber, A. Beimososki, “Efficient Cr3+ Sensitized Nd3+:GdScGa-Garnet Laser at 1.06 μm,” Appl. Phys. B. 28, 355–358 (1982).
[CrossRef]

Birnbaum, M.

R. A. Fields, M. Birnbaum, C. L. Fincher, “Highly Efficient Nd:YOV4 Diode-Laser End-Pumped Laser,” Appl. Phys. Lett. 51, 1885–1886 (1987).
[CrossRef]

Denker, B. I.

B. I. Denker, A. A. Izyneev, I. I. Kuratec, Yu. V. Tsvetkov, A. V. Shestakov, “Lasing in Phosphate Glasses with High Neodymium Ion Concentrations Under Pumping with Light-Emitting Diodes,” Sov. J. Quantum Electron. 10, 1167–1168 (1980).
[CrossRef]

DeShazer, L. G.

T. S. Lomheim, L. G. DeShazer, “Optical Absorption Intensities of Trivalent Neodymium in the Uniaxial Crystal Yttrium Orthovanadate,” J. Appl. Phys. 49, 5517–5522 (1978).
[CrossRef]

T. S. Lomheim, L. G. DeShazer, “Optical Absorption Intensities of Trivalent Neodymium in the Uniaxial Crystal Yttrium Ortho-vanadate,” J. Appl. Phys. 47, 5517–5522 (1976).

Esterowitz, L.

N. P. Barnes, D. J. Gettemy, L. Esterowitz, R. E. Allen, “Comparison of Nd 1.06 and 1.33 μm Operation in Various Hosts,” IEEE J. Quant. Electron. QE-23, 1434–1451 (1987).
[CrossRef]

Fields, R. A.

R. A. Fields, M. Birnbaum, C. L. Fincher, “Highly Efficient Nd:YOV4 Diode-Laser End-Pumped Laser,” Appl. Phys. Lett. 51, 1885–1886 (1987).
[CrossRef]

Fincher, C. L.

R. A. Fields, M. Birnbaum, C. L. Fincher, “Highly Efficient Nd:YOV4 Diode-Laser End-Pumped Laser,” Appl. Phys. Lett. 51, 1885–1886 (1987).
[CrossRef]

Gabbe, D. R.

A. L. Harmer, A. Linz, D. R. Gabbe, “Fluorescence of Nd3+ in Lithium Yttrium Fluoride,” J. Phys. Cen. Sol. 30, 1483–1487 (1969).
[CrossRef]

Gettemy, D. J.

N. P. Barnes, D. J. Gettemy, L. Esterowitz, R. E. Allen, “Comparison of Nd 1.06 and 1.33 μm Operation in Various Hosts,” IEEE J. Quant. Electron. QE-23, 1434–1451 (1987).
[CrossRef]

N. P. Barnes, D. J. Gettemy, “Temperature Variation of the Refractive Indices of Yttrium Lithium Fluoride,” J. Opt. Soc. Am. 70, 1244–1247 (1980).
[CrossRef]

Geusic, J. E.

L. F. Johnson, J. E. Geusic, L. G. von Ulitert, “Efficient, High-Power Coherent Emission from Ho3+ Ions in Yttrium Alluminum Garnet, Assisted by Energy Transfer,” Appl. Phys. Lett. 8, 200–202 (1966).
[CrossRef]

J. E. Geusic, H. M. Macros, L. G. van Ulitert, “Laser Oscillations in Nd-Doped Yttrium Aluminum, Yttrium Gallium, and Gadolinium Garnets,” Appl. Phys. Lett. 4, 182–184 (1964).
[CrossRef]

Harmer, A. L.

A. L. Harmer, A. Linz, D. R. Gabbe, “Fluorescence of Nd3+ in Lithium Yttrium Fluoride,” J. Phys. Cen. Sol. 30, 1483–1487 (1969).
[CrossRef]

Huber, G.

D. Pruss, G. Huber, A. Beimososki, “Efficient Cr3+ Sensitized Nd3+:GdScGa-Garnet Laser at 1.06 μm,” Appl. Phys. B. 28, 355–358 (1982).
[CrossRef]

Izyneev, A. A.

B. I. Denker, A. A. Izyneev, I. I. Kuratec, Yu. V. Tsvetkov, A. V. Shestakov, “Lasing in Phosphate Glasses with High Neodymium Ion Concentrations Under Pumping with Light-Emitting Diodes,” Sov. J. Quantum Electron. 10, 1167–1168 (1980).
[CrossRef]

Jenssen, H. P.

H. P. Jenssen, R. F. Begley, R. Webb, R. C. Morris, “Spectroscopic Properties and Laser Performance of Nd3+ in Lanthanum Beryllate,” J. Appl. Phys. 47, 1496–1500 (1976).
[CrossRef]

Johnson, L. F.

L. F. Johnson, J. E. Geusic, L. G. von Ulitert, “Efficient, High-Power Coherent Emission from Ho3+ Ions in Yttrium Alluminum Garnet, Assisted by Energy Transfer,” Appl. Phys. Lett. 8, 200–202 (1966).
[CrossRef]

Koechner, W.

W. Koechner, Solid-State Laser Engineering, (Springer-Verlag, New York, 1976).

Kuratec, I. I.

B. I. Denker, A. A. Izyneev, I. I. Kuratec, Yu. V. Tsvetkov, A. V. Shestakov, “Lasing in Phosphate Glasses with High Neodymium Ion Concentrations Under Pumping with Light-Emitting Diodes,” Sov. J. Quantum Electron. 10, 1167–1168 (1980).
[CrossRef]

Linz, A.

A. L. Harmer, A. Linz, D. R. Gabbe, “Fluorescence of Nd3+ in Lithium Yttrium Fluoride,” J. Phys. Cen. Sol. 30, 1483–1487 (1969).
[CrossRef]

Lomheim, T. S.

T. S. Lomheim, L. G. DeShazer, “Optical Absorption Intensities of Trivalent Neodymium in the Uniaxial Crystal Yttrium Orthovanadate,” J. Appl. Phys. 49, 5517–5522 (1978).
[CrossRef]

T. S. Lomheim, L. G. DeShazer, “Optical Absorption Intensities of Trivalent Neodymium in the Uniaxial Crystal Yttrium Ortho-vanadate,” J. Appl. Phys. 47, 5517–5522 (1976).

Macros, H. M.

J. E. Geusic, H. M. Macros, L. G. van Ulitert, “Laser Oscillations in Nd-Doped Yttrium Aluminum, Yttrium Gallium, and Gadolinium Garnets,” Appl. Phys. Lett. 4, 182–184 (1964).
[CrossRef]

Morris, R. C.

H. P. Jenssen, R. F. Begley, R. Webb, R. C. Morris, “Spectroscopic Properties and Laser Performance of Nd3+ in Lanthanum Beryllate,” J. Appl. Phys. 47, 1496–1500 (1976).
[CrossRef]

Pruss, D.

D. Pruss, G. Huber, A. Beimososki, “Efficient Cr3+ Sensitized Nd3+:GdScGa-Garnet Laser at 1.06 μm,” Appl. Phys. B. 28, 355–358 (1982).
[CrossRef]

Shestakov, A. V.

B. I. Denker, A. A. Izyneev, I. I. Kuratec, Yu. V. Tsvetkov, A. V. Shestakov, “Lasing in Phosphate Glasses with High Neodymium Ion Concentrations Under Pumping with Light-Emitting Diodes,” Sov. J. Quantum Electron. 10, 1167–1168 (1980).
[CrossRef]

Tsvetkov, Yu. V.

B. I. Denker, A. A. Izyneev, I. I. Kuratec, Yu. V. Tsvetkov, A. V. Shestakov, “Lasing in Phosphate Glasses with High Neodymium Ion Concentrations Under Pumping with Light-Emitting Diodes,” Sov. J. Quantum Electron. 10, 1167–1168 (1980).
[CrossRef]

van Ulitert, L. G.

J. E. Geusic, H. M. Macros, L. G. van Ulitert, “Laser Oscillations in Nd-Doped Yttrium Aluminum, Yttrium Gallium, and Gadolinium Garnets,” Appl. Phys. Lett. 4, 182–184 (1964).
[CrossRef]

von Ulitert, L. G.

L. F. Johnson, J. E. Geusic, L. G. von Ulitert, “Efficient, High-Power Coherent Emission from Ho3+ Ions in Yttrium Alluminum Garnet, Assisted by Energy Transfer,” Appl. Phys. Lett. 8, 200–202 (1966).
[CrossRef]

Webb, R.

H. P. Jenssen, R. F. Begley, R. Webb, R. C. Morris, “Spectroscopic Properties and Laser Performance of Nd3+ in Lanthanum Beryllate,” J. Appl. Phys. 47, 1496–1500 (1976).
[CrossRef]

Wolfe, W.

W. Wolfe, G. Zissis, The Infrared Handbook (Office of Naval Research, Wash D.C., 1978) pp. 3–34 to 3–39.

Zissis, G.

W. Wolfe, G. Zissis, The Infrared Handbook (Office of Naval Research, Wash D.C., 1978) pp. 3–34 to 3–39.

Appl. Phys. B.

D. Pruss, G. Huber, A. Beimososki, “Efficient Cr3+ Sensitized Nd3+:GdScGa-Garnet Laser at 1.06 μm,” Appl. Phys. B. 28, 355–358 (1982).
[CrossRef]

Appl. Phys. Lett.

L. F. Johnson, J. E. Geusic, L. G. von Ulitert, “Efficient, High-Power Coherent Emission from Ho3+ Ions in Yttrium Alluminum Garnet, Assisted by Energy Transfer,” Appl. Phys. Lett. 8, 200–202 (1966).
[CrossRef]

J. E. Geusic, H. M. Macros, L. G. van Ulitert, “Laser Oscillations in Nd-Doped Yttrium Aluminum, Yttrium Gallium, and Gadolinium Garnets,” Appl. Phys. Lett. 4, 182–184 (1964).
[CrossRef]

R. A. Fields, M. Birnbaum, C. L. Fincher, “Highly Efficient Nd:YOV4 Diode-Laser End-Pumped Laser,” Appl. Phys. Lett. 51, 1885–1886 (1987).
[CrossRef]

IEEE J. Quant. Electron.

N. P. Barnes, D. J. Gettemy, L. Esterowitz, R. E. Allen, “Comparison of Nd 1.06 and 1.33 μm Operation in Various Hosts,” IEEE J. Quant. Electron. QE-23, 1434–1451 (1987).
[CrossRef]

J. Appl. Phys.

T. S. Lomheim, L. G. DeShazer, “Optical Absorption Intensities of Trivalent Neodymium in the Uniaxial Crystal Yttrium Orthovanadate,” J. Appl. Phys. 49, 5517–5522 (1978).
[CrossRef]

T. S. Lomheim, L. G. DeShazer, “Optical Absorption Intensities of Trivalent Neodymium in the Uniaxial Crystal Yttrium Ortho-vanadate,” J. Appl. Phys. 47, 5517–5522 (1976).

H. P. Jenssen, R. F. Begley, R. Webb, R. C. Morris, “Spectroscopic Properties and Laser Performance of Nd3+ in Lanthanum Beryllate,” J. Appl. Phys. 47, 1496–1500 (1976).
[CrossRef]

J. Opt. Soc. Am.

J. Phys. Cen. Sol.

A. L. Harmer, A. Linz, D. R. Gabbe, “Fluorescence of Nd3+ in Lithium Yttrium Fluoride,” J. Phys. Cen. Sol. 30, 1483–1487 (1969).
[CrossRef]

Sov. J. Quantum Electron.

B. I. Denker, A. A. Izyneev, I. I. Kuratec, Yu. V. Tsvetkov, A. V. Shestakov, “Lasing in Phosphate Glasses with High Neodymium Ion Concentrations Under Pumping with Light-Emitting Diodes,” Sov. J. Quantum Electron. 10, 1167–1168 (1980).
[CrossRef]

Other

W. Koechner, Solid-State Laser Engineering, (Springer-Verlag, New York, 1976).

W. Wolfe, G. Zissis, The Infrared Handbook (Office of Naval Research, Wash D.C., 1978) pp. 3–34 to 3–39.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Coordinate system for rod geometry.

Fig. 2
Fig. 2

Coordinate system for slab geometry.

Fig. 3
Fig. 3

Absorption coefficient for unity concentration vs wavelength for Nd:YAG.

Fig. 4
Fig. 4

Numerator of the absorption efficiency before integration over wavelength vs wavelength for a 2000-K Blackbody for Nd:YAG.

Fig. 5
Fig. 5

Numerator of the absorption efficiency before integration over wavelength vs wavelength for a 6000-K Blackbody for Nd:YAG.

Fig. 6
Fig. 6

Absorption efficiency vs blackbody temperature for Nd:YAG.

Fig. 7
Fig. 7

Absorption efficiency vs rod radius and concentration product for Nd:YAG.

Fig. 8
Fig. 8

Absorption efficiency vs rod radius and concentration product at 3200 K for six laser materials.

Fig. 9
Fig. 9

Absorption efficiency vs rod radius and concentration product at 5800 K for six laser materials.

Fig. 10
Fig. 10

Absorption efficiency vs rod radius and concentration product at 9500 K for six laser materials.

Tables (6)

Tables Icon

Table I Calculated Sensitivity of the Absorption Efficiency Calculations to the Pump Angular Distribution Function

Tables Icon

Table 2 Comparison of Continuous Wave Performance and Calculated Absorption Efficiency

Tables Icon

Table III Comparison of Normal Mode Performance and Calculated Absorption Efficiency

Tables Icon

Table IV Summary of the Absorption Spectra

Tables Icon

Table V Absorption Efficiency for Six Nd-doped Laser Materials at 5800K, and 9500K for Rod Radius and Concentration Product = .10 mm 1.0 mm

Tables Icon

Table VI Maximum Absorption Efficiency and Corresponding Blackbody Temperature for Six Nd-doped Laser Materials for Rod Radius and Concentration Product = 0.02 mm

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n 2 = A + B λ 2 / ( λ 2 - C ) + D λ 2 / ( λ 2 - E ) ,
β 1 = - ln ( T ) / N c ,
n a = λ 1 λ 2 θ = 0 π / 2 φ = 0 π / 2 λ λ n Q ( λ ) P ( λ ) F ( θ , φ ) { 1 - exp [ - β a ( θ , φ ) ] } sin θ d θ d φ d λ λ = 0 θ = 0 π / 2 φ = 0 π / 2 P ( λ ) F ( θ , φ ) sin θ d θ d φ d λ ,
F ( θ , φ ) = 1.0 uniform , F ( θ , φ ) = cos θ Lambertian , F ( θ , φ ) = exp ( - sin 2 θ / δ θ 2 ) cos θ symmetrical Gaussian , and F ( θ , φ ) = exp ( - sin 2 θ cos 2 φ / δ θ x 2 - sin 2 θ sin 2 φ / δ θ y 2 ) × cos θ asymmetrical Gaussian ,
( θ , φ ) = 2 r ( 1 - sin 2 θ / n 2 ) ( 1 - sin 2 θ cos 2 φ / n 2 )             rod ( θ , φ ) = t / ( 1 - sin 2 θ / n 2 )             slab ,

Metrics