Abstract

We have constructed a low-cost, phosphate glass actively mode-locked, actively Q-switched oscillator that produces pulses from 150 to 1000 ps with high energy. This was accomplished by reducing the time required for relaxation oscillations to die out through the use of an acoustooptic feedback system. We describe system performance and construction details of this oscillator.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Kuizenga, “Short Pulse Oscillator Development for the Nd:Glass Laser-Fusion Systems,” IEEE J. Quantum Electron. QE-17, 1694–1708 (1981).
    [CrossRef]
  2. Laser Program Annual Report 1982, Lawrence Livermore National Laboratory, Livermore, CA, , pp. 2-53–2-63, 1982.
  3. W. Seka, J. Bunkenburg, “Active-Passive Mode-locked Oscillators at 1.054 μm,” J. Appl. phys. 49, 2277–2280 (1978).
    [CrossRef]
  4. N. I. Sax, Dangerous Properties of Industrial Materials,(Van Nostrand Reinhold, New York, 1984), pp. 928–929.
  5. R. P. Johnson, N. K. Moncur, L. D. Seibert, “Simple Method for Electronic Feedback Stabilization of an Actively Mode-locked and Q-switched Nd:YLF Laser,” in Technical Digest Conference on Lasers and Electrooptic Systems (Optical Society of American, Washington DC1987).
  6. E. W. Roschger, A. P. Schwarzenbach, J. E. Balmer, H. P. Weber, “An Actively Mode-Locked/Q-switched Nd:Phosphate Glass Laser Oscillator,” IEEE J. Quantum Electron. QE-21, 465–469 (1985).
    [CrossRef]
  7. G. F. Albrecht, M. T. Gruneisen, D. Smith, “An Active Mode-Locked Q-Switched Oscillator Using Nd+3 Doped Glass as the Active Medium,” IEEE J. Quantum Electron. QE-21, 1189–1194 (1985).
    [CrossRef]
  8. O. P. McDuff, S. E. Harris, “Nonlinear Theory of the Internally Loss-Modulated Laser,” IEEE J. Quantum Electron. QE-11, 101–111 (1967).
    [CrossRef]
  9. H. A. Haus, “A Theory of Forced Mode Locking,” IEEE J. Quantum Electron. QE-11, 323–330 (1975).
    [CrossRef]
  10. D. J. Kuizenga, A. E. Siegman, “FM and AM Mode Locking of the Homogeneous Laser—Part I: Theory,” IEEE J. Quantum Electron. QE-6, 694–708 (1970).
    [CrossRef]
  11. G. F. Albrecht, L. Lund, D. Smith, “Building a Simple, Reliable, and Low-Cost Modelocker System,” Appl. Opt. 22, 1276–1280 (1983).
    [CrossRef] [PubMed]
  12. G. Albrecht, J. Bunkenburg, “Active-Passive Mode-Locked Oscillator Generating Nanosecond Pulses,” Opt. Commun. 38, 377–380 (1981).
    [CrossRef]
  13. Product of Kigre, Inc., 5333 Secor Rd., Toledo, OH 43623.
  14. Developed at the University of California, Berkeley, Department of Electrical Engineering.
  15. Product of Mini-Circuits, P.O. Box 350166, Brooklyn N.Y. 11235-0003.
  16. G. F. Albrecht, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA., 94550; private communication.
  17. Product of Lasermetrics, 196 Coolidge Ave., Englewood, NJ 07631.
  18. Product of Laser Precision, 1231 Hart Street, Utica, NY 13502.
  19. Product of Hadland Photonics, 495 Tech Center W., Marlboro, MA 01752.

1985 (2)

E. W. Roschger, A. P. Schwarzenbach, J. E. Balmer, H. P. Weber, “An Actively Mode-Locked/Q-switched Nd:Phosphate Glass Laser Oscillator,” IEEE J. Quantum Electron. QE-21, 465–469 (1985).
[CrossRef]

G. F. Albrecht, M. T. Gruneisen, D. Smith, “An Active Mode-Locked Q-Switched Oscillator Using Nd+3 Doped Glass as the Active Medium,” IEEE J. Quantum Electron. QE-21, 1189–1194 (1985).
[CrossRef]

1983 (1)

G. F. Albrecht, L. Lund, D. Smith, “Building a Simple, Reliable, and Low-Cost Modelocker System,” Appl. Opt. 22, 1276–1280 (1983).
[CrossRef] [PubMed]

1981 (2)

G. Albrecht, J. Bunkenburg, “Active-Passive Mode-Locked Oscillator Generating Nanosecond Pulses,” Opt. Commun. 38, 377–380 (1981).
[CrossRef]

D. J. Kuizenga, “Short Pulse Oscillator Development for the Nd:Glass Laser-Fusion Systems,” IEEE J. Quantum Electron. QE-17, 1694–1708 (1981).
[CrossRef]

1978 (1)

W. Seka, J. Bunkenburg, “Active-Passive Mode-locked Oscillators at 1.054 μm,” J. Appl. phys. 49, 2277–2280 (1978).
[CrossRef]

1975 (1)

H. A. Haus, “A Theory of Forced Mode Locking,” IEEE J. Quantum Electron. QE-11, 323–330 (1975).
[CrossRef]

1970 (1)

D. J. Kuizenga, A. E. Siegman, “FM and AM Mode Locking of the Homogeneous Laser—Part I: Theory,” IEEE J. Quantum Electron. QE-6, 694–708 (1970).
[CrossRef]

1967 (1)

O. P. McDuff, S. E. Harris, “Nonlinear Theory of the Internally Loss-Modulated Laser,” IEEE J. Quantum Electron. QE-11, 101–111 (1967).
[CrossRef]

Albrecht, G.

G. Albrecht, J. Bunkenburg, “Active-Passive Mode-Locked Oscillator Generating Nanosecond Pulses,” Opt. Commun. 38, 377–380 (1981).
[CrossRef]

Albrecht, G. F.

G. F. Albrecht, M. T. Gruneisen, D. Smith, “An Active Mode-Locked Q-Switched Oscillator Using Nd+3 Doped Glass as the Active Medium,” IEEE J. Quantum Electron. QE-21, 1189–1194 (1985).
[CrossRef]

G. F. Albrecht, L. Lund, D. Smith, “Building a Simple, Reliable, and Low-Cost Modelocker System,” Appl. Opt. 22, 1276–1280 (1983).
[CrossRef] [PubMed]

G. F. Albrecht, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA., 94550; private communication.

Balmer, J. E.

E. W. Roschger, A. P. Schwarzenbach, J. E. Balmer, H. P. Weber, “An Actively Mode-Locked/Q-switched Nd:Phosphate Glass Laser Oscillator,” IEEE J. Quantum Electron. QE-21, 465–469 (1985).
[CrossRef]

Bunkenburg, J.

G. Albrecht, J. Bunkenburg, “Active-Passive Mode-Locked Oscillator Generating Nanosecond Pulses,” Opt. Commun. 38, 377–380 (1981).
[CrossRef]

W. Seka, J. Bunkenburg, “Active-Passive Mode-locked Oscillators at 1.054 μm,” J. Appl. phys. 49, 2277–2280 (1978).
[CrossRef]

Gruneisen, M. T.

G. F. Albrecht, M. T. Gruneisen, D. Smith, “An Active Mode-Locked Q-Switched Oscillator Using Nd+3 Doped Glass as the Active Medium,” IEEE J. Quantum Electron. QE-21, 1189–1194 (1985).
[CrossRef]

Harris, S. E.

O. P. McDuff, S. E. Harris, “Nonlinear Theory of the Internally Loss-Modulated Laser,” IEEE J. Quantum Electron. QE-11, 101–111 (1967).
[CrossRef]

Haus, H. A.

H. A. Haus, “A Theory of Forced Mode Locking,” IEEE J. Quantum Electron. QE-11, 323–330 (1975).
[CrossRef]

Johnson, R. P.

R. P. Johnson, N. K. Moncur, L. D. Seibert, “Simple Method for Electronic Feedback Stabilization of an Actively Mode-locked and Q-switched Nd:YLF Laser,” in Technical Digest Conference on Lasers and Electrooptic Systems (Optical Society of American, Washington DC1987).

Kuizenga, D. J.

D. J. Kuizenga, “Short Pulse Oscillator Development for the Nd:Glass Laser-Fusion Systems,” IEEE J. Quantum Electron. QE-17, 1694–1708 (1981).
[CrossRef]

D. J. Kuizenga, A. E. Siegman, “FM and AM Mode Locking of the Homogeneous Laser—Part I: Theory,” IEEE J. Quantum Electron. QE-6, 694–708 (1970).
[CrossRef]

Lund, L.

G. F. Albrecht, L. Lund, D. Smith, “Building a Simple, Reliable, and Low-Cost Modelocker System,” Appl. Opt. 22, 1276–1280 (1983).
[CrossRef] [PubMed]

McDuff, O. P.

O. P. McDuff, S. E. Harris, “Nonlinear Theory of the Internally Loss-Modulated Laser,” IEEE J. Quantum Electron. QE-11, 101–111 (1967).
[CrossRef]

Moncur, N. K.

R. P. Johnson, N. K. Moncur, L. D. Seibert, “Simple Method for Electronic Feedback Stabilization of an Actively Mode-locked and Q-switched Nd:YLF Laser,” in Technical Digest Conference on Lasers and Electrooptic Systems (Optical Society of American, Washington DC1987).

Roschger, E. W.

E. W. Roschger, A. P. Schwarzenbach, J. E. Balmer, H. P. Weber, “An Actively Mode-Locked/Q-switched Nd:Phosphate Glass Laser Oscillator,” IEEE J. Quantum Electron. QE-21, 465–469 (1985).
[CrossRef]

Sax, N. I.

N. I. Sax, Dangerous Properties of Industrial Materials,(Van Nostrand Reinhold, New York, 1984), pp. 928–929.

Schwarzenbach, A. P.

E. W. Roschger, A. P. Schwarzenbach, J. E. Balmer, H. P. Weber, “An Actively Mode-Locked/Q-switched Nd:Phosphate Glass Laser Oscillator,” IEEE J. Quantum Electron. QE-21, 465–469 (1985).
[CrossRef]

Seibert, L. D.

R. P. Johnson, N. K. Moncur, L. D. Seibert, “Simple Method for Electronic Feedback Stabilization of an Actively Mode-locked and Q-switched Nd:YLF Laser,” in Technical Digest Conference on Lasers and Electrooptic Systems (Optical Society of American, Washington DC1987).

Seka, W.

W. Seka, J. Bunkenburg, “Active-Passive Mode-locked Oscillators at 1.054 μm,” J. Appl. phys. 49, 2277–2280 (1978).
[CrossRef]

Siegman, A. E.

D. J. Kuizenga, A. E. Siegman, “FM and AM Mode Locking of the Homogeneous Laser—Part I: Theory,” IEEE J. Quantum Electron. QE-6, 694–708 (1970).
[CrossRef]

Smith, D.

G. F. Albrecht, M. T. Gruneisen, D. Smith, “An Active Mode-Locked Q-Switched Oscillator Using Nd+3 Doped Glass as the Active Medium,” IEEE J. Quantum Electron. QE-21, 1189–1194 (1985).
[CrossRef]

G. F. Albrecht, L. Lund, D. Smith, “Building a Simple, Reliable, and Low-Cost Modelocker System,” Appl. Opt. 22, 1276–1280 (1983).
[CrossRef] [PubMed]

Weber, H. P.

E. W. Roschger, A. P. Schwarzenbach, J. E. Balmer, H. P. Weber, “An Actively Mode-Locked/Q-switched Nd:Phosphate Glass Laser Oscillator,” IEEE J. Quantum Electron. QE-21, 465–469 (1985).
[CrossRef]

Appl. Opt. (1)

G. F. Albrecht, L. Lund, D. Smith, “Building a Simple, Reliable, and Low-Cost Modelocker System,” Appl. Opt. 22, 1276–1280 (1983).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (2)

D. J. Kuizenga, “Short Pulse Oscillator Development for the Nd:Glass Laser-Fusion Systems,” IEEE J. Quantum Electron. QE-17, 1694–1708 (1981).
[CrossRef]

G. F. Albrecht, M. T. Gruneisen, D. Smith, “An Active Mode-Locked Q-Switched Oscillator Using Nd+3 Doped Glass as the Active Medium,” IEEE J. Quantum Electron. QE-21, 1189–1194 (1985).
[CrossRef]

IEEE J. Quantum Electron. (2)

O. P. McDuff, S. E. Harris, “Nonlinear Theory of the Internally Loss-Modulated Laser,” IEEE J. Quantum Electron. QE-11, 101–111 (1967).
[CrossRef]

E. W. Roschger, A. P. Schwarzenbach, J. E. Balmer, H. P. Weber, “An Actively Mode-Locked/Q-switched Nd:Phosphate Glass Laser Oscillator,” IEEE J. Quantum Electron. QE-21, 465–469 (1985).
[CrossRef]

IEEE J. Quantum Electron. (2)

H. A. Haus, “A Theory of Forced Mode Locking,” IEEE J. Quantum Electron. QE-11, 323–330 (1975).
[CrossRef]

D. J. Kuizenga, A. E. Siegman, “FM and AM Mode Locking of the Homogeneous Laser—Part I: Theory,” IEEE J. Quantum Electron. QE-6, 694–708 (1970).
[CrossRef]

J. Appl. phys. (1)

W. Seka, J. Bunkenburg, “Active-Passive Mode-locked Oscillators at 1.054 μm,” J. Appl. phys. 49, 2277–2280 (1978).
[CrossRef]

Opt. Commun. (1)

G. Albrecht, J. Bunkenburg, “Active-Passive Mode-Locked Oscillator Generating Nanosecond Pulses,” Opt. Commun. 38, 377–380 (1981).
[CrossRef]

Other (10)

Product of Kigre, Inc., 5333 Secor Rd., Toledo, OH 43623.

Developed at the University of California, Berkeley, Department of Electrical Engineering.

Product of Mini-Circuits, P.O. Box 350166, Brooklyn N.Y. 11235-0003.

G. F. Albrecht, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA., 94550; private communication.

Product of Lasermetrics, 196 Coolidge Ave., Englewood, NJ 07631.

Product of Laser Precision, 1231 Hart Street, Utica, NY 13502.

Product of Hadland Photonics, 495 Tech Center W., Marlboro, MA 01752.

N. I. Sax, Dangerous Properties of Industrial Materials,(Van Nostrand Reinhold, New York, 1984), pp. 928–929.

R. P. Johnson, N. K. Moncur, L. D. Seibert, “Simple Method for Electronic Feedback Stabilization of an Actively Mode-locked and Q-switched Nd:YLF Laser,” in Technical Digest Conference on Lasers and Electrooptic Systems (Optical Society of American, Washington DC1987).

Laser Program Annual Report 1982, Lawrence Livermore National Laboratory, Livermore, CA, , pp. 2-53–2-63, 1982.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Block diagram of the feedback stabilized oscillator. The output of a photodiode, which monitors the intensity circulating in the cavity, is used to modulate the rf power applied to an acoustooptic Q-switch and, therefore, the intracavity loss.

Fig. 2
Fig. 2

Schematic of the simple LC pulse forming network used in the feedback stabilized oscillator. The inductor closest to the lamp is larger than the others to slow the rise time of the current pulse and prevent damage to the flashlamps.

Fig. 3
Fig. 3

Block diagram of the feedback network. The output of the photodiode is summed with a reference voltage to drive the IF port of a double-balanced mixer. The reference voltage is set to allow enough rf through the mixer to introduce a constant loss in the oscillator cavity that is switched off for Q-switching.

Fig. 4
Fig. 4

Measured current pulse from the circuit of Fig.2. Note that the peak current is 190 A at a 2.0-kV charging voltage. Current regulation at these power levels which are required for an Nd:glass oscillator is difficult.

Fig. 5
Fig. 5

(a) The intracavity intensity prior to Q-switching or prelase; this prelase is reproducible. (b) The Q-switched pulse train; the individual pulses near the peak of this train have an energy of 0.5 mJ. (c) The output from an automated streak camera and rattle plate measurement of the oscillator’s pulse width with one 190-μm etalon in the cavity. The data show well-formed 110 ps pulses with no substructure.

Fig. 6
Fig. 6

Pulse widths and pulse width stability vs prelase duration. The solid line is the fit to the expression derived by Kuizenga.1

Fig. 7
Fig. 7

Pulse duration vs thickness of thickest etalon in the cavity. The solid line is a linear fit to the data.

Fig. 8
Fig. 8

Pulse duration vs rf power applied to the mode-locker. The solid line is the least-squares fit to the 1/4 power rule described in the text.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

τ p = ( 2 n 2 π ) ( 1 θ m f m ) 1 / 2 ( g Δ f 2 + 1 Δ f e 2 ) 1 / 4 ,
τ p = τ p o [ tanh ( m / m 0 ) ] - 1 / 2 ,
m 0 = Δ f / ( 4 θ m f m g )

Metrics