Abstract

Optical prefilters, which make use of the double-refraction effect in crystalline quartz, reduce the amount of aliasing artifacts in the displayed image of a video system. This paper describes anew class of optical prefilter that produces different amounts of blur for different colors. The chromatic variation is obtained by placing a polarization retarder between two quartz crystals. This type of filter is useful with sensors that have unequal pixel densities in the three sensed colors.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Mertz, F. Gray, “A Theory of Scanning and Its Relation to the Characteristics of the Transmitted Signal in Telephotography and Television,” Bell Syst. Tech. J. 13, 464–515 (1934).
  2. O. H. Schade, “Image Reproduction by a Line Raster Process,” in Perception of Displayed Information, L. M. Biberman, Ed. (Plenum, New York, 1973), pp. 233–278.
    [CrossRef]
  3. R. Legault, “The Aliasing Problems in Two-Dimensional Sampled Imagery,” in Perception of Displayed Information, L. M. Biberman, Ed. (Plenum, New York, 1973), pp. 279–312.
    [CrossRef]
  4. G. Root, “A Qualitative Study of the Trade-Off Between Sample Spacing and MTF for Discrete Image Sensors,” Report 900-631, (Jet Propulsion Laboratory, Aug.1973).
  5. D. F. Barbe, S. B. Campana, “Imaging Arrays Using the Charge-Coupled Concept,” in Advances in Image Pickup and Display, Vol. 3, B. Kazan, Ed. (Academic, New York, 1977), pp. 171–296.
  6. F. O. Huck, N. Halyo, S. K. Park, “Aliasing and Blurring in 2-D Sampled Imagery,” Appl. Opt. 19, 2174–2181 (1980).
    [CrossRef] [PubMed]
  7. D. H. Pritchard, “Stripe-Color-Encoded Single-Tube Color-Television Camera Systems,” RCA Rev. 34, 217–266 (1973).
  8. J. J. Brandinger, G. L. Fredendall, D. H. Pritchard, “Striped Color Encoded Single Tube Color Television Systems,” in Advances in Image Pickup and Display, Vol. 2, B. Kazan, Ed. (Academic, New York, 1975), pp. 169–246.
  9. K. A. Parulski, “Color Filters and Processing Alternatives for One-Chip Cameras,” IEEE Trans. Electron. Devices ED-32, 1381–1389 (1985).
    [CrossRef]
  10. See, for example, E. Hecht, A. Zajac, Optics, (Addison-Wesley, Reading, MA, 1974), pp. 230–239.
  11. D. H. Pritchard, “Adjustable Bandwidth Optical Filters,” Patent3,588,224 (1971).
  12. Y. Ogawa, Y. Nakada, H. Yasui, S. Ochi, “Development of CCD Imaging Block for Single Chip Color Camera,” IEEE Trans. Cons. Electron. CE-31, 405–412 (1985).
    [CrossRef]
  13. Y. Otake, “Television Camera Having an Optical Filter,” Patent4,539,584 (1985).
  14. M. Sato, S. Nagahara, K. Takahashi, “Optical Filter for Color Imaging Device,” Patent4,626,897 (1986).
  15. Y. Nakada, M. Amemiya, “Optical Low Pass Filter,” Patent4,743,100 (1988).
  16. T. Asaida, “Optical Low-Pass Filter Including Three Crystal Plates for a Solid-State TV Camera,” Patent4,761,682 (1988).
  17. M. Mino, Y. Okano, “Optical Low-Pass Filter for a Single-Vidicon Color Television Camera,” J. Soc. Motion Pict. Telev. Eng. 81, 282–285 (1972).
  18. S. Nobutoki, Y. Okano, “Optical Image Pickup System,” Patent4,100,570 (1978).
  19. T. Shinozaki, Y. Ohtake, S. Ono, “Optical Low-Pass Filter,” Patent4,472,735 (1984).
  20. A. Rosenfeld, A. C. Kak, Digital Picture Processing, Vol. 1, (Academic, New York, 1982), pp. 71–115.
  21. W. Wittenstein, J. C. Fontanella, A. R. Newbery, J. Baars, “The Definition of the OTF and the Measurements of Aliasing for Sampled Imaging Systems,” Opt. Acta 29, 41–50 (1982).
    [CrossRef]
  22. See, for example, J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, New York, 1978), pp. 266–285.
  23. C. H. Sequin, “Interlacing in Charge-Coupled Imaging Devices,” IEEE Trans. Electron. Devices, ED-20, 535–541 (1973).
    [CrossRef]
  24. T.-H. Lee et al., “A 360,000–Pixel Charge-Coupled Color-Image Sensor for Imaging Photographic Negative,” IEEE Trans. Electron. Devices, ED-32, 1439–1445 (1985).
  25. M. C. Simon, “Ray Tracing Formulas for Monoaxial Optical Components,” Appl. Opt. 22, 354–360 (1983).
    [CrossRef] [PubMed]
  26. M. C. Simon, R. M. Echarri, “Ray Tracing Formulas for Monoaxial Optical Components: Vectorial Formulation,” Appl. Opt. 25, 1935–1939 (1986).
    [CrossRef] [PubMed]

1986 (1)

1985 (3)

K. A. Parulski, “Color Filters and Processing Alternatives for One-Chip Cameras,” IEEE Trans. Electron. Devices ED-32, 1381–1389 (1985).
[CrossRef]

Y. Ogawa, Y. Nakada, H. Yasui, S. Ochi, “Development of CCD Imaging Block for Single Chip Color Camera,” IEEE Trans. Cons. Electron. CE-31, 405–412 (1985).
[CrossRef]

T.-H. Lee et al., “A 360,000–Pixel Charge-Coupled Color-Image Sensor for Imaging Photographic Negative,” IEEE Trans. Electron. Devices, ED-32, 1439–1445 (1985).

1983 (1)

1982 (1)

W. Wittenstein, J. C. Fontanella, A. R. Newbery, J. Baars, “The Definition of the OTF and the Measurements of Aliasing for Sampled Imaging Systems,” Opt. Acta 29, 41–50 (1982).
[CrossRef]

1980 (1)

1973 (2)

D. H. Pritchard, “Stripe-Color-Encoded Single-Tube Color-Television Camera Systems,” RCA Rev. 34, 217–266 (1973).

C. H. Sequin, “Interlacing in Charge-Coupled Imaging Devices,” IEEE Trans. Electron. Devices, ED-20, 535–541 (1973).
[CrossRef]

1972 (1)

M. Mino, Y. Okano, “Optical Low-Pass Filter for a Single-Vidicon Color Television Camera,” J. Soc. Motion Pict. Telev. Eng. 81, 282–285 (1972).

1934 (1)

P. Mertz, F. Gray, “A Theory of Scanning and Its Relation to the Characteristics of the Transmitted Signal in Telephotography and Television,” Bell Syst. Tech. J. 13, 464–515 (1934).

Amemiya, M.

Y. Nakada, M. Amemiya, “Optical Low Pass Filter,” Patent4,743,100 (1988).

Asaida, T.

T. Asaida, “Optical Low-Pass Filter Including Three Crystal Plates for a Solid-State TV Camera,” Patent4,761,682 (1988).

Baars, J.

W. Wittenstein, J. C. Fontanella, A. R. Newbery, J. Baars, “The Definition of the OTF and the Measurements of Aliasing for Sampled Imaging Systems,” Opt. Acta 29, 41–50 (1982).
[CrossRef]

Barbe, D. F.

D. F. Barbe, S. B. Campana, “Imaging Arrays Using the Charge-Coupled Concept,” in Advances in Image Pickup and Display, Vol. 3, B. Kazan, Ed. (Academic, New York, 1977), pp. 171–296.

Brandinger, J. J.

J. J. Brandinger, G. L. Fredendall, D. H. Pritchard, “Striped Color Encoded Single Tube Color Television Systems,” in Advances in Image Pickup and Display, Vol. 2, B. Kazan, Ed. (Academic, New York, 1975), pp. 169–246.

Campana, S. B.

D. F. Barbe, S. B. Campana, “Imaging Arrays Using the Charge-Coupled Concept,” in Advances in Image Pickup and Display, Vol. 3, B. Kazan, Ed. (Academic, New York, 1977), pp. 171–296.

Echarri, R. M.

Fontanella, J. C.

W. Wittenstein, J. C. Fontanella, A. R. Newbery, J. Baars, “The Definition of the OTF and the Measurements of Aliasing for Sampled Imaging Systems,” Opt. Acta 29, 41–50 (1982).
[CrossRef]

Fredendall, G. L.

J. J. Brandinger, G. L. Fredendall, D. H. Pritchard, “Striped Color Encoded Single Tube Color Television Systems,” in Advances in Image Pickup and Display, Vol. 2, B. Kazan, Ed. (Academic, New York, 1975), pp. 169–246.

Gaskill, J. D.

See, for example, J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, New York, 1978), pp. 266–285.

Gray, F.

P. Mertz, F. Gray, “A Theory of Scanning and Its Relation to the Characteristics of the Transmitted Signal in Telephotography and Television,” Bell Syst. Tech. J. 13, 464–515 (1934).

Halyo, N.

Hecht, E.

See, for example, E. Hecht, A. Zajac, Optics, (Addison-Wesley, Reading, MA, 1974), pp. 230–239.

Huck, F. O.

Kak, A. C.

A. Rosenfeld, A. C. Kak, Digital Picture Processing, Vol. 1, (Academic, New York, 1982), pp. 71–115.

Lee, T.-H.

T.-H. Lee et al., “A 360,000–Pixel Charge-Coupled Color-Image Sensor for Imaging Photographic Negative,” IEEE Trans. Electron. Devices, ED-32, 1439–1445 (1985).

Legault, R.

R. Legault, “The Aliasing Problems in Two-Dimensional Sampled Imagery,” in Perception of Displayed Information, L. M. Biberman, Ed. (Plenum, New York, 1973), pp. 279–312.
[CrossRef]

Mertz, P.

P. Mertz, F. Gray, “A Theory of Scanning and Its Relation to the Characteristics of the Transmitted Signal in Telephotography and Television,” Bell Syst. Tech. J. 13, 464–515 (1934).

Mino, M.

M. Mino, Y. Okano, “Optical Low-Pass Filter for a Single-Vidicon Color Television Camera,” J. Soc. Motion Pict. Telev. Eng. 81, 282–285 (1972).

Nagahara, S.

M. Sato, S. Nagahara, K. Takahashi, “Optical Filter for Color Imaging Device,” Patent4,626,897 (1986).

Nakada, Y.

Y. Ogawa, Y. Nakada, H. Yasui, S. Ochi, “Development of CCD Imaging Block for Single Chip Color Camera,” IEEE Trans. Cons. Electron. CE-31, 405–412 (1985).
[CrossRef]

Y. Nakada, M. Amemiya, “Optical Low Pass Filter,” Patent4,743,100 (1988).

Newbery, A. R.

W. Wittenstein, J. C. Fontanella, A. R. Newbery, J. Baars, “The Definition of the OTF and the Measurements of Aliasing for Sampled Imaging Systems,” Opt. Acta 29, 41–50 (1982).
[CrossRef]

Nobutoki, S.

S. Nobutoki, Y. Okano, “Optical Image Pickup System,” Patent4,100,570 (1978).

Ochi, S.

Y. Ogawa, Y. Nakada, H. Yasui, S. Ochi, “Development of CCD Imaging Block for Single Chip Color Camera,” IEEE Trans. Cons. Electron. CE-31, 405–412 (1985).
[CrossRef]

Ogawa, Y.

Y. Ogawa, Y. Nakada, H. Yasui, S. Ochi, “Development of CCD Imaging Block for Single Chip Color Camera,” IEEE Trans. Cons. Electron. CE-31, 405–412 (1985).
[CrossRef]

Ohtake, Y.

T. Shinozaki, Y. Ohtake, S. Ono, “Optical Low-Pass Filter,” Patent4,472,735 (1984).

Okano, Y.

M. Mino, Y. Okano, “Optical Low-Pass Filter for a Single-Vidicon Color Television Camera,” J. Soc. Motion Pict. Telev. Eng. 81, 282–285 (1972).

S. Nobutoki, Y. Okano, “Optical Image Pickup System,” Patent4,100,570 (1978).

Ono, S.

T. Shinozaki, Y. Ohtake, S. Ono, “Optical Low-Pass Filter,” Patent4,472,735 (1984).

Otake, Y.

Y. Otake, “Television Camera Having an Optical Filter,” Patent4,539,584 (1985).

Park, S. K.

Parulski, K. A.

K. A. Parulski, “Color Filters and Processing Alternatives for One-Chip Cameras,” IEEE Trans. Electron. Devices ED-32, 1381–1389 (1985).
[CrossRef]

Pritchard, D. H.

D. H. Pritchard, “Stripe-Color-Encoded Single-Tube Color-Television Camera Systems,” RCA Rev. 34, 217–266 (1973).

J. J. Brandinger, G. L. Fredendall, D. H. Pritchard, “Striped Color Encoded Single Tube Color Television Systems,” in Advances in Image Pickup and Display, Vol. 2, B. Kazan, Ed. (Academic, New York, 1975), pp. 169–246.

D. H. Pritchard, “Adjustable Bandwidth Optical Filters,” Patent3,588,224 (1971).

Root, G.

G. Root, “A Qualitative Study of the Trade-Off Between Sample Spacing and MTF for Discrete Image Sensors,” Report 900-631, (Jet Propulsion Laboratory, Aug.1973).

Rosenfeld, A.

A. Rosenfeld, A. C. Kak, Digital Picture Processing, Vol. 1, (Academic, New York, 1982), pp. 71–115.

Sato, M.

M. Sato, S. Nagahara, K. Takahashi, “Optical Filter for Color Imaging Device,” Patent4,626,897 (1986).

Schade, O. H.

O. H. Schade, “Image Reproduction by a Line Raster Process,” in Perception of Displayed Information, L. M. Biberman, Ed. (Plenum, New York, 1973), pp. 233–278.
[CrossRef]

Sequin, C. H.

C. H. Sequin, “Interlacing in Charge-Coupled Imaging Devices,” IEEE Trans. Electron. Devices, ED-20, 535–541 (1973).
[CrossRef]

Shinozaki, T.

T. Shinozaki, Y. Ohtake, S. Ono, “Optical Low-Pass Filter,” Patent4,472,735 (1984).

Simon, M. C.

Takahashi, K.

M. Sato, S. Nagahara, K. Takahashi, “Optical Filter for Color Imaging Device,” Patent4,626,897 (1986).

Wittenstein, W.

W. Wittenstein, J. C. Fontanella, A. R. Newbery, J. Baars, “The Definition of the OTF and the Measurements of Aliasing for Sampled Imaging Systems,” Opt. Acta 29, 41–50 (1982).
[CrossRef]

Yasui, H.

Y. Ogawa, Y. Nakada, H. Yasui, S. Ochi, “Development of CCD Imaging Block for Single Chip Color Camera,” IEEE Trans. Cons. Electron. CE-31, 405–412 (1985).
[CrossRef]

Zajac, A.

See, for example, E. Hecht, A. Zajac, Optics, (Addison-Wesley, Reading, MA, 1974), pp. 230–239.

Appl. Opt. (3)

Bell Syst. Tech. J. (1)

P. Mertz, F. Gray, “A Theory of Scanning and Its Relation to the Characteristics of the Transmitted Signal in Telephotography and Television,” Bell Syst. Tech. J. 13, 464–515 (1934).

IEEE Trans. Electron. Devices (1)

K. A. Parulski, “Color Filters and Processing Alternatives for One-Chip Cameras,” IEEE Trans. Electron. Devices ED-32, 1381–1389 (1985).
[CrossRef]

IEEE Trans. Cons. Electron. (1)

Y. Ogawa, Y. Nakada, H. Yasui, S. Ochi, “Development of CCD Imaging Block for Single Chip Color Camera,” IEEE Trans. Cons. Electron. CE-31, 405–412 (1985).
[CrossRef]

IEEE Trans. Electron. Devices (2)

C. H. Sequin, “Interlacing in Charge-Coupled Imaging Devices,” IEEE Trans. Electron. Devices, ED-20, 535–541 (1973).
[CrossRef]

T.-H. Lee et al., “A 360,000–Pixel Charge-Coupled Color-Image Sensor for Imaging Photographic Negative,” IEEE Trans. Electron. Devices, ED-32, 1439–1445 (1985).

J. Soc. Motion Pict. Telev. Eng. (1)

M. Mino, Y. Okano, “Optical Low-Pass Filter for a Single-Vidicon Color Television Camera,” J. Soc. Motion Pict. Telev. Eng. 81, 282–285 (1972).

Opt. Acta (1)

W. Wittenstein, J. C. Fontanella, A. R. Newbery, J. Baars, “The Definition of the OTF and the Measurements of Aliasing for Sampled Imaging Systems,” Opt. Acta 29, 41–50 (1982).
[CrossRef]

RCA Rev. (1)

D. H. Pritchard, “Stripe-Color-Encoded Single-Tube Color-Television Camera Systems,” RCA Rev. 34, 217–266 (1973).

Other (15)

J. J. Brandinger, G. L. Fredendall, D. H. Pritchard, “Striped Color Encoded Single Tube Color Television Systems,” in Advances in Image Pickup and Display, Vol. 2, B. Kazan, Ed. (Academic, New York, 1975), pp. 169–246.

See, for example, E. Hecht, A. Zajac, Optics, (Addison-Wesley, Reading, MA, 1974), pp. 230–239.

D. H. Pritchard, “Adjustable Bandwidth Optical Filters,” Patent3,588,224 (1971).

O. H. Schade, “Image Reproduction by a Line Raster Process,” in Perception of Displayed Information, L. M. Biberman, Ed. (Plenum, New York, 1973), pp. 233–278.
[CrossRef]

R. Legault, “The Aliasing Problems in Two-Dimensional Sampled Imagery,” in Perception of Displayed Information, L. M. Biberman, Ed. (Plenum, New York, 1973), pp. 279–312.
[CrossRef]

G. Root, “A Qualitative Study of the Trade-Off Between Sample Spacing and MTF for Discrete Image Sensors,” Report 900-631, (Jet Propulsion Laboratory, Aug.1973).

D. F. Barbe, S. B. Campana, “Imaging Arrays Using the Charge-Coupled Concept,” in Advances in Image Pickup and Display, Vol. 3, B. Kazan, Ed. (Academic, New York, 1977), pp. 171–296.

S. Nobutoki, Y. Okano, “Optical Image Pickup System,” Patent4,100,570 (1978).

T. Shinozaki, Y. Ohtake, S. Ono, “Optical Low-Pass Filter,” Patent4,472,735 (1984).

A. Rosenfeld, A. C. Kak, Digital Picture Processing, Vol. 1, (Academic, New York, 1982), pp. 71–115.

Y. Otake, “Television Camera Having an Optical Filter,” Patent4,539,584 (1985).

M. Sato, S. Nagahara, K. Takahashi, “Optical Filter for Color Imaging Device,” Patent4,626,897 (1986).

Y. Nakada, M. Amemiya, “Optical Low Pass Filter,” Patent4,743,100 (1988).

T. Asaida, “Optical Low-Pass Filter Including Three Crystal Plates for a Solid-State TV Camera,” Patent4,761,682 (1988).

See, for example, J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, New York, 1978), pp. 266–285.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Double refraction effect in crystalline quartz.

Fig. 2
Fig. 2

Pixel MTF for sensors with three different G values. The Nyquist frequencies of the sensors are the same.

Fig. 3
Fig. 3

Use of a blur filter to change a sensor with G = 1/2 to an effective sensor with G = 1.

Fig. 4
Fig. 4

Color imager with twice as many green pixels as red or blue pixels.

Fig. 5
Fig. 5

One row of the desired effective sampling aperture pattern for the sensor in Fig. 4. The three rows shown actually fall on top of each other.

Fig. 6
Fig. 6

One-dimensional blur needed to convert the sensor in Fig. 4 to the desired effective sensor pattern in Fig. 5.

Fig. 7
Fig. 7

Design of a birefringent blur filter that produces a color-dependent blur.

Fig. 8
Fig. 8

Relative intensity of the Ioo spot as a function of wavelength for a filter containing a retarder that is a full wave at 550 nm.

Fig. 9
Fig. 9

Video images of a starburst pattern obtained without (A) and with (B) a color-variable birefringent blur filter.

Fig. 10
Fig. 10

Images of Fig. 9 displayed one color component at a time. (A), (C), and (E) were obtained without the blur filter, and (B), (D), and (F) were obtained with the MWWM blur filter.

Fig. 11
Fig. 11

Images of a pictorial scene without (A) and with (B) the MWWM blur filter.

Fig. 12
Fig. 12

Test target images with a two spot achromatic blur filter: (A) a test target; (B) a pictorial scene.

Fig. 13
Fig. 13

Some of the possible color blur patterns.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

x o = t tan ( δ ) ,
i s ( x ) = [ i ( x ) * h ( x ) * b ( x ) * rect ( x / a ) ] comb ( x / x s ) ,
p ( x ) = b ( x ) * rect ( x / a ) .
i s ( x ) = [ i ( x ) * h ( x ) * p ( x ) ] comb ( x / x s ) .
I s ( ξ ) = [ I ( ξ ) H ( ξ ) P ( ξ ) ] * comb ( x s ξ ) ,
G = pixel width / pixel pitch .
p ( x ) = rect ( x / G x s ) ,
P ( ξ ) = sinc ( G x s ξ ) .
Δ ϕ ( λ ) = ( 2 π / λ ) t ( n o - n e ) ,
Δ ϕ b = ( λ g / λ b ) Δ ϕ g = 1.22 ( 2 π ) ,
Δ ϕ r = ( λ g / λ r ) Δ ϕ g = 0.85 ( 2 π ) .
I o e ( λ ) = I e o ( λ ) = ½ { 1 - cos [ Δ ϕ ( λ ) ] } ,
I o o ( λ ) = I e e ( λ ) = 1 - I o e ( λ ) .

Metrics