Abstract

A method is described for measuring transmittance, reflectance, and loss spectra in thin optical films. The method is applied to measure the properties of multilayer coatings of Si and SiO2 used to make mirrors and antireflection coating in the 1.0–1.7-μm wavelength region. Mirrors with reflectance up to 99.5% with nine quarter-wavelength layers and two-layer antireflection coatings with reflectance of <0.2% have been made.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Hass, M. H. Francombe, R. W. Hoffman, Physics of Thin Film, Vol. 8 (Academic, New York, 1975), p. 27.
  2. W. T. Pawlewicz, P. M. Martin, J. W. Griffin, P. A. Temple, “1315 nm Dielectric Mirror Fabrication by Reactive Sputtering,” in Technical Digest, Topical Meeting on High Power Laser Optical Components, Boulder, CO, 18–19 Oct. (1984).
  3. O. S. Heavens, Optical Properties of Thin Films (Butterworth, Dover, 1955).
  4. D. C. Decker, V. A. Hodgkin, “Techniques of Reflectance and Transmittance of Thin Film Coatings as a Function of Temperature,” Proc. Soc. Photo-Opt. Instrum. Eng. 325, 167 (1982).
  5. D. Z. Anderson, J. C. Frisch, C. S. Masser, “Mirror Reflectometer Based on Optical Cavity Decay Time,” Appl. Opt. 23, 1238–1244 (1984).
    [CrossRef] [PubMed]
  6. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980), p. 68.
  7. H. A. Macleod, Thin-Film Optical Filters (Adam Hilger, London, 1986), p. 44.
  8. L. Ley, in The Physics of Hydrogenated Silicon II, J. D. Joannopoulos, G. Lucovsky, Eds. (Springer-Verlag, Berlin, 1984), p. 146.
  9. W. T. Pawlewicz, P. M. Martin, D. D. Hays, I. B. Mann, “Recent Developments in Reactively Sputtered Optical Thin Films,” Proc. Soc. Photo-Opt. Instrum. Eng. 325, 105–116 (1982).

1984 (1)

1982 (2)

W. T. Pawlewicz, P. M. Martin, D. D. Hays, I. B. Mann, “Recent Developments in Reactively Sputtered Optical Thin Films,” Proc. Soc. Photo-Opt. Instrum. Eng. 325, 105–116 (1982).

D. C. Decker, V. A. Hodgkin, “Techniques of Reflectance and Transmittance of Thin Film Coatings as a Function of Temperature,” Proc. Soc. Photo-Opt. Instrum. Eng. 325, 167 (1982).

Anderson, D. Z.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980), p. 68.

Decker, D. C.

D. C. Decker, V. A. Hodgkin, “Techniques of Reflectance and Transmittance of Thin Film Coatings as a Function of Temperature,” Proc. Soc. Photo-Opt. Instrum. Eng. 325, 167 (1982).

Francombe, M. H.

G. Hass, M. H. Francombe, R. W. Hoffman, Physics of Thin Film, Vol. 8 (Academic, New York, 1975), p. 27.

Frisch, J. C.

Griffin, J. W.

W. T. Pawlewicz, P. M. Martin, J. W. Griffin, P. A. Temple, “1315 nm Dielectric Mirror Fabrication by Reactive Sputtering,” in Technical Digest, Topical Meeting on High Power Laser Optical Components, Boulder, CO, 18–19 Oct. (1984).

Hass, G.

G. Hass, M. H. Francombe, R. W. Hoffman, Physics of Thin Film, Vol. 8 (Academic, New York, 1975), p. 27.

Hays, D. D.

W. T. Pawlewicz, P. M. Martin, D. D. Hays, I. B. Mann, “Recent Developments in Reactively Sputtered Optical Thin Films,” Proc. Soc. Photo-Opt. Instrum. Eng. 325, 105–116 (1982).

Heavens, O. S.

O. S. Heavens, Optical Properties of Thin Films (Butterworth, Dover, 1955).

Hodgkin, V. A.

D. C. Decker, V. A. Hodgkin, “Techniques of Reflectance and Transmittance of Thin Film Coatings as a Function of Temperature,” Proc. Soc. Photo-Opt. Instrum. Eng. 325, 167 (1982).

Hoffman, R. W.

G. Hass, M. H. Francombe, R. W. Hoffman, Physics of Thin Film, Vol. 8 (Academic, New York, 1975), p. 27.

Ley, L.

L. Ley, in The Physics of Hydrogenated Silicon II, J. D. Joannopoulos, G. Lucovsky, Eds. (Springer-Verlag, Berlin, 1984), p. 146.

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filters (Adam Hilger, London, 1986), p. 44.

Mann, I. B.

W. T. Pawlewicz, P. M. Martin, D. D. Hays, I. B. Mann, “Recent Developments in Reactively Sputtered Optical Thin Films,” Proc. Soc. Photo-Opt. Instrum. Eng. 325, 105–116 (1982).

Martin, P. M.

W. T. Pawlewicz, P. M. Martin, D. D. Hays, I. B. Mann, “Recent Developments in Reactively Sputtered Optical Thin Films,” Proc. Soc. Photo-Opt. Instrum. Eng. 325, 105–116 (1982).

W. T. Pawlewicz, P. M. Martin, J. W. Griffin, P. A. Temple, “1315 nm Dielectric Mirror Fabrication by Reactive Sputtering,” in Technical Digest, Topical Meeting on High Power Laser Optical Components, Boulder, CO, 18–19 Oct. (1984).

Masser, C. S.

Pawlewicz, W. T.

W. T. Pawlewicz, P. M. Martin, D. D. Hays, I. B. Mann, “Recent Developments in Reactively Sputtered Optical Thin Films,” Proc. Soc. Photo-Opt. Instrum. Eng. 325, 105–116 (1982).

W. T. Pawlewicz, P. M. Martin, J. W. Griffin, P. A. Temple, “1315 nm Dielectric Mirror Fabrication by Reactive Sputtering,” in Technical Digest, Topical Meeting on High Power Laser Optical Components, Boulder, CO, 18–19 Oct. (1984).

Temple, P. A.

W. T. Pawlewicz, P. M. Martin, J. W. Griffin, P. A. Temple, “1315 nm Dielectric Mirror Fabrication by Reactive Sputtering,” in Technical Digest, Topical Meeting on High Power Laser Optical Components, Boulder, CO, 18–19 Oct. (1984).

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980), p. 68.

Appl. Opt. (1)

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

D. C. Decker, V. A. Hodgkin, “Techniques of Reflectance and Transmittance of Thin Film Coatings as a Function of Temperature,” Proc. Soc. Photo-Opt. Instrum. Eng. 325, 167 (1982).

W. T. Pawlewicz, P. M. Martin, D. D. Hays, I. B. Mann, “Recent Developments in Reactively Sputtered Optical Thin Films,” Proc. Soc. Photo-Opt. Instrum. Eng. 325, 105–116 (1982).

Other (6)

G. Hass, M. H. Francombe, R. W. Hoffman, Physics of Thin Film, Vol. 8 (Academic, New York, 1975), p. 27.

W. T. Pawlewicz, P. M. Martin, J. W. Griffin, P. A. Temple, “1315 nm Dielectric Mirror Fabrication by Reactive Sputtering,” in Technical Digest, Topical Meeting on High Power Laser Optical Components, Boulder, CO, 18–19 Oct. (1984).

O. S. Heavens, Optical Properties of Thin Films (Butterworth, Dover, 1955).

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980), p. 68.

H. A. Macleod, Thin-Film Optical Filters (Adam Hilger, London, 1986), p. 44.

L. Ley, in The Physics of Hydrogenated Silicon II, J. D. Joannopoulos, G. Lucovsky, Eds. (Springer-Verlag, Berlin, 1984), p. 146.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Experimental setup to measure reflectance, transmittance, and loss in optical thin films.

Fig. 2
Fig. 2

Measured reflectance of AR for a two-layer coating. The high index layer is Si (150 Å thick), and the low index layer is SiO2 (2800 Å thick) on a silica substrates

Fig. 3
Fig. 3

Loss in coating similar to the one in Fig. 2.

Fig. 4
Fig. 4

Loss spectrum of 1 μm of Si on a glass substrate.

Fig. 5
Fig. 5

Loss and transmittance spectra of coating of Fig. 7 after being heated in air at 300°C for 2.5 h.

Fig. 6
Fig. 6

Loss and reflectance spectra for sample shown in Fig. 8 after further heating in H2 at 175°C for 2 h.

Fig. 7
Fig. 7

Loss and reflectance spectra for a four-layer quarter-wavelength stack of Si/SiO2 on glass. Heavy lines are front surface reflection, and the light line is back surface reflection.

Fig. 8
Fig. 8

Similar to Fig. 7 for five-layer Si/SiO2 stack.

Fig. 9
Fig. 9

Similar to Fig. 7 for nine-layer Si/SiO2 stack.

Fig. 10
Fig. 10

Similar to Fig. 7 for ten-layer Si/SiO2 stack.

Fig. 11
Fig. 11

Measured reflectances for various samples of multilayer quarterwavelength stacks of Si/SiO2. The short horizontal lines indicate the theoretical reflectances for nH = 1.31, nL = 1.46, ns = 1.46.

Fig. 12
Fig. 12

Loss and reflectance spectra for a commercially made high reflectance mirror.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

R + T + L = 1.
S 1 ( λ ) S ( λ ) [ R 1 + R 2 ( 1 - R 1 - L 1 ) 2 1 - R 1 R 2 ] ,
S 2 ( λ ) S ( λ ) [ ( 1 - R 1 - L 1 ) ( 1 - R 2 - L 2 ) 1 - R 1 R 2 ] ,
S total ( λ ) = S ( λ ) [ S 1 ( λ ) + S 2 ( λ ) ] ,
S 0 ( λ ) = S ( λ ) .
S 1 ( λ ) S ( λ ) R 1 ,
S 2 ( λ ) S ( λ ) T 1 ,
1 - S 1 ( λ ) + S 2 ( λ ) S ( λ ) L 1 .
R 2 N = 1 - 4 n s n o ( n L n H ) 2 N ,
R 2 N + 1 = 1 - 4 n o n H n s n H ( n L n H ) 2 N .
n AR = n s n o .
tan 2 2 π n H t H λ = ( n s - n o ) ( n o n S - n L 2 ) n H 2 ( n L 2 n s - n o n H 2 ) ( n H 2 - n o n s ) ,
tan 2 2 π n L t L λ = ( n s - n o ) ( n H 2 - n o n s ) n L 2 ( n L 2 n s - n o n H 2 ) ( n H 2 - n o n s ) ,

Metrics