Abstract

A gallium doped silicon (Si:Ga) extrinsic photoconductive detector was tested for sensitivity and quickness of response. The developmental goal for this detector material was high speed operation without compromised detectivity (D*). The high speed, p-type infrared photoconductor, with photoconductive gain less than unity, was tested at 10.5 μm to determine an experimental value for the detectivity-bandwidth product of D*f* = 3.69 × 1018 cm-Hz3/2/W. Subsequently a theoretical model taking into account the optical absorption profile and majority-carrier-transport processes within the detector was developed. It agreed with experimental data and corroborated the theory.

© 1990 Optical Society of America

Full Article  |  PDF Article

Errata

J. P. Garcia and E. L. Dereniak, "Extrinsic silicon photodetector characterization: errata," Appl. Opt. 29, 2838-2838 (1990)
https://www.osapublishing.org/ao/abstract.cfm?uri=ao-29-19-2838

References

  • View by:
  • |
  • |
  • |

  1. S. R. Borrello, “Detection Uncertainty,” Infrared Phys. 12, 267–270 (1972).
    [CrossRef]
  2. R. L. Williams, “Speed and Sensitivity Limitations of Extrinsic Photoconductors,” Infrared Phys. 9, 37–40 (1969).
    [CrossRef]
  3. S. Gaalema, Private Communication; Hughes Aircraft Corp., Industrial Products Division, Carlsbad, CA (1987).
  4. T. T. Braggins, H. M. Hobgood, J. C. Swartz, R. N. Thomas, “High Infrared Responsivity Indium-doped Silicon Detector Material Compensated by Neutron Transmutation,” IEEE Trans. Electron. Devices ED-27, 2–10 (1980).
    [CrossRef]
  5. A. B. O’Connor, “Detectivity Measurements on the Si:Ga Detector” (Unpublished).
  6. E. L. Dereniak, J. P. Garcia, D. L. Perry, “Voltage-mode Operation of PbSnTe Laser Diodes” (Unpublished).
  7. W. L. Wolfe, G. J. Zissis, Eds., The Infrared Handbook (Superintendent of Documents. Washington, DC1985), pp. 2–78.
  8. L. P. Huelsman, P. E. Allen, Introduction to the Theory and Design of Active Filters (McGraw-Hill, New York, 1980), pp. 93–97.
  9. E. L. Dereniak, D. G. Crowe, Optical Radiation Detectors (Wiley, New York, 1984).
  10. N. Sclar, “Extrinsic Silicon Detectors for 3–5 and 8–14 μm,” Infrared Phys. 16, 435–448 (1976).
    [CrossRef]

1980

T. T. Braggins, H. M. Hobgood, J. C. Swartz, R. N. Thomas, “High Infrared Responsivity Indium-doped Silicon Detector Material Compensated by Neutron Transmutation,” IEEE Trans. Electron. Devices ED-27, 2–10 (1980).
[CrossRef]

1976

N. Sclar, “Extrinsic Silicon Detectors for 3–5 and 8–14 μm,” Infrared Phys. 16, 435–448 (1976).
[CrossRef]

1972

S. R. Borrello, “Detection Uncertainty,” Infrared Phys. 12, 267–270 (1972).
[CrossRef]

1969

R. L. Williams, “Speed and Sensitivity Limitations of Extrinsic Photoconductors,” Infrared Phys. 9, 37–40 (1969).
[CrossRef]

Allen, P. E.

L. P. Huelsman, P. E. Allen, Introduction to the Theory and Design of Active Filters (McGraw-Hill, New York, 1980), pp. 93–97.

Borrello, S. R.

S. R. Borrello, “Detection Uncertainty,” Infrared Phys. 12, 267–270 (1972).
[CrossRef]

Braggins, T. T.

T. T. Braggins, H. M. Hobgood, J. C. Swartz, R. N. Thomas, “High Infrared Responsivity Indium-doped Silicon Detector Material Compensated by Neutron Transmutation,” IEEE Trans. Electron. Devices ED-27, 2–10 (1980).
[CrossRef]

Crowe, D. G.

E. L. Dereniak, D. G. Crowe, Optical Radiation Detectors (Wiley, New York, 1984).

Dereniak, E. L.

E. L. Dereniak, D. G. Crowe, Optical Radiation Detectors (Wiley, New York, 1984).

E. L. Dereniak, J. P. Garcia, D. L. Perry, “Voltage-mode Operation of PbSnTe Laser Diodes” (Unpublished).

Gaalema, S.

S. Gaalema, Private Communication; Hughes Aircraft Corp., Industrial Products Division, Carlsbad, CA (1987).

Garcia, J. P.

E. L. Dereniak, J. P. Garcia, D. L. Perry, “Voltage-mode Operation of PbSnTe Laser Diodes” (Unpublished).

Hobgood, H. M.

T. T. Braggins, H. M. Hobgood, J. C. Swartz, R. N. Thomas, “High Infrared Responsivity Indium-doped Silicon Detector Material Compensated by Neutron Transmutation,” IEEE Trans. Electron. Devices ED-27, 2–10 (1980).
[CrossRef]

Huelsman, L. P.

L. P. Huelsman, P. E. Allen, Introduction to the Theory and Design of Active Filters (McGraw-Hill, New York, 1980), pp. 93–97.

O’Connor, A. B.

A. B. O’Connor, “Detectivity Measurements on the Si:Ga Detector” (Unpublished).

Perry, D. L.

E. L. Dereniak, J. P. Garcia, D. L. Perry, “Voltage-mode Operation of PbSnTe Laser Diodes” (Unpublished).

Sclar, N.

N. Sclar, “Extrinsic Silicon Detectors for 3–5 and 8–14 μm,” Infrared Phys. 16, 435–448 (1976).
[CrossRef]

Swartz, J. C.

T. T. Braggins, H. M. Hobgood, J. C. Swartz, R. N. Thomas, “High Infrared Responsivity Indium-doped Silicon Detector Material Compensated by Neutron Transmutation,” IEEE Trans. Electron. Devices ED-27, 2–10 (1980).
[CrossRef]

Thomas, R. N.

T. T. Braggins, H. M. Hobgood, J. C. Swartz, R. N. Thomas, “High Infrared Responsivity Indium-doped Silicon Detector Material Compensated by Neutron Transmutation,” IEEE Trans. Electron. Devices ED-27, 2–10 (1980).
[CrossRef]

Williams, R. L.

R. L. Williams, “Speed and Sensitivity Limitations of Extrinsic Photoconductors,” Infrared Phys. 9, 37–40 (1969).
[CrossRef]

IEEE Trans. Electron. Devices

T. T. Braggins, H. M. Hobgood, J. C. Swartz, R. N. Thomas, “High Infrared Responsivity Indium-doped Silicon Detector Material Compensated by Neutron Transmutation,” IEEE Trans. Electron. Devices ED-27, 2–10 (1980).
[CrossRef]

Infrared Phys.

R. L. Williams, “Speed and Sensitivity Limitations of Extrinsic Photoconductors,” Infrared Phys. 9, 37–40 (1969).
[CrossRef]

N. Sclar, “Extrinsic Silicon Detectors for 3–5 and 8–14 μm,” Infrared Phys. 16, 435–448 (1976).
[CrossRef]

Infrared Phys.

S. R. Borrello, “Detection Uncertainty,” Infrared Phys. 12, 267–270 (1972).
[CrossRef]

Other

S. Gaalema, Private Communication; Hughes Aircraft Corp., Industrial Products Division, Carlsbad, CA (1987).

A. B. O’Connor, “Detectivity Measurements on the Si:Ga Detector” (Unpublished).

E. L. Dereniak, J. P. Garcia, D. L. Perry, “Voltage-mode Operation of PbSnTe Laser Diodes” (Unpublished).

W. L. Wolfe, G. J. Zissis, Eds., The Infrared Handbook (Superintendent of Documents. Washington, DC1985), pp. 2–78.

L. P. Huelsman, P. E. Allen, Introduction to the Theory and Design of Active Filters (McGraw-Hill, New York, 1980), pp. 93–97.

E. L. Dereniak, D. G. Crowe, Optical Radiation Detectors (Wiley, New York, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Equivalent circuit of detector and preamp.

Fig. 2
Fig. 2

Extrinsic p-type semiconductor energy diagram; see Ref. 9, p. 89.

Fig. 3
Fig. 3

Spectral response of Si:Ga; see Ref. 10, p. 438.

Fig. 4
Fig. 4

Si:Ga detector geometry.

Fig. 5
Fig. 5

Step response.

Fig. 6
Fig. 6

Frequency response.

Fig. 7
Fig. 7

Low speed Dewar cross section; see Ref. 5, p. 2.

Fig. 8
Fig. 8

Dewar coldfinger detail; see Ref. 5, p. 15.

Fig. 9
Fig. 9

Radiometric experiment layout.

Fig. 10
Fig. 10

Radiometric experiment, transimpedance preamp detail.

Fig. 11
Fig. 11

Pulse response experiment layout.

Fig. 12
Fig. 12

Pulse response electronics detail (one detector element shown).

Fig. 13
Fig. 13

Pulse response of Si:Ga detector element 2 (inverted).

Fig. 14
Fig. 14

Geometry of a single detector element.

Fig. 15
Fig. 15

Background radiation geometry.

Fig. 16
Fig. 16

Noise model for detector and amplifier circuit.

Tables (2)

Tables Icon

Table I Measurements of NEP and Calculations of Detectivity for Some Si:Ga Photoconductive Detectors

Tables Icon

Table II Root-Mean-Square Noise Voltage Calculated for Photoconductive Detector, Op-Amp, and Detector–Op-Amp Combination, Respectively (Appendix C)

Equations (51)

Equations on this page are rendered with MathJax. Learn more.

D * f = D * 1 2 π τ = 1 2 π ( σ 4 ) 1 / 2 ,
D * f = λ η 8 π h c q μ p 0 d ,
D * f = λ 2 h c η E p B 1 2 π τ p = λ 4 π h c τ p η E p B .
λ c ( μ m ) 1.2388 E g ( eV ) .
E p ( x ) = E op exp ( - α x ) .
p t = ( p - p 0 ) τ p + g - · J q
p = p 0 + Δ p ,
J p = q μ p p E - q D p p .
· E = - q ρ ( x , y , z , t ) .
D p = k T q μ p [ cm 2 / sec ] .
Δ p t = - Δ p τ p + g ( x , t ) - μ p ( p 0 + Δ p ) E x - μ p E Δ p x + D p 2 Δ p x 2 ,
E x = q s 0 [ N D + - N A - + p 0 ( x , t ) + Δ p ( x , t ) ] .
g ( x , t ) = g 0 exp ( - α x ) u ( t ) ,
BLIP : Δ p p 0 ,
E x = q s 0 [ N D + - N A - + p 0 ( x , t ) ] = 0.
Δ p t - D p 2 Δ p x 2 + μ p E 0 Δ p x + Δ p τ p = g 0 exp ( - α x ) u ( t )
Δ p ( x , t ) = g 0 τ e - α x [ 1 - e - t / τ ] + x g 0 τ 4 π D p 0 t [ 1 - e - ( t - ξ ) / τ ] exp [ ( x - μ p E 0 ξ ) 2 4 D p ξ ξ τ p ] ξ 3 / 2 d ξ ,
t 0 ,             0 x d , τ = ( 1 / τ p - D p α 2 - α u p E 0 ) - 1 .
Δ i ( x , t ) = q u p E 0 A d g 0 τ e - α x ( 1 - e - t / τ ) ,
Δ I ( f ) = 2 k g 0 τ 1 + ( 2 π f τ ) 2 .
D p = 5.86 cm 2 / s , α = 7.50 cm - 1 , μ p = 4000 cm 2 / V - s , E 0 = V B / d = 492.1 V / cm , and τ p = 10.8 ns
D BLIP * ( λ , f ) = λ 2 h c η E p B ,
D * f * = λ 4 π h c τ η E p B = λ 4 π h c ( 1 / τ p - D p α 2 - α μ p E 0 ) - 1 × η E p B
D * = 2.95 × 10 11 [ cm - Hz 1 / 2 / W ] ,
D * f * = 3.63 × 10 18 [ cm - Hz 3 / 2 / W ] .
τ D R = 0 ρ ,
ρ = 0 d E p B η τ p μ p q .
τ = τ p + τ D R .
τ min = 2 ( 0 d q μ p η E p B ) 1 / 2 .
D * = g λ η 2 h c G R A k T d
ϕ e s = L e s A s A d s τ F F R 2 ,
L e s = s π 0 λ c M e ( T s , λ ) d λ + w π λ c M e ( T w , λ ) d λ - [ C B π 0 λ c M e ( T RM , λ ) d λ + w π λ c M e ( T w , λ ) d λ ] .
L e s = s π 0 λ c M e ( T s , λ ) d λ - C B π 0 λ c M e ( T RM , λ ) d λ .
NEP ( T s , f ) = ϕ e s S / N ,
D * ( T s , f ) = A d Δ f NEP ( T s , f ) ,
D BLIP * ( λ p , f ) = K ( T s , λ ) D BLIP * ( T s , f ) ,
K ( T s λ ) = τ w 0 λ c M e ( T s , λ ) d λ h c λ p 0 λ p M p ( T s , λ ) d λ ,
D * ( λ , f ) = λ λ p D BLIP * ( λ p , f ) .
D * = A d Δ f i rms R i ,
I rms = ( i G - R ) rms = 2 q G η E p B A d Δ f .
D BLIP * = A d Δ f [ q λ η h c G ] 2 q G η E p B A d Δ f = λ 2 h c η E p B ,
τ = ( 1 / τ p - D p α 2 + α μ p E 0 ) - 1 .
D = 0.076 in . ; R = 1.340 in . ; θ 1 / 2 = tan - 1 ( D / 2 R ) = 1.62 ° ; f / No . = 17.6.
E p B = M p B sin 2 θ 1 / 2 for the Lambertian radiator , M p B = M p C B + M p w ,
M p C B = τ w C B λ cuton BaF 2 λ cutoff BaF 2 M p ( 300 K , λ ) d λ ,
M p C B = 5.69 × 10 17 [ photons / cm 2 - s ] .
M p w = w λ cutoff BaF 2 M p ( 300 K , λ ) d λ
M p w = 2.96 × 10 8 [ photons / cm 2 - s ] , E p B = M p B sin 2 θ 1 / 2 = ( M p C B + M p w ) sin 2 θ 1 / 2 , E p B = 2.82 × 10 15 [ photons / cm 2 - s ] .
v on , det = R f i G - R 2 + i jnR d .
v on , amp = ( i n 2 + i jn R f 2 ) R f 2 + v n 2 ( 1 + R f / R d ) 2 .
f ( t ) = f 0 ( 1 - e - t / τ ) , f ( t R 10 ) = 0.10 f 0 , 1 - exp ( - t R 10 / τ ) = 0.10 t R 10 = - τ ln ( 0.90 ) = 0.1054 τ , f ( t R 90 ) = 0.90 f 0 , 1 - exp ( - t R 90 / τ ) = 0.90 , t R 90 = - τ ln ( 0.10 ) = 2.3026 τ , t R 10 - 90 = t R 90 - t R 10 = 2.1972 τ , f - 3 dB = 1 2 π τ = 1 2 π [ t R 10 - 90 2.1972 ] = 0.350 t R 10 - 90 .

Metrics