Abstract

A novel intensity modulated fiber optic displacement sensor based on the relative motion of an optical fiber and a graded index lens is described. The technique allows the use of either single- or multimode optical fibers in either single or dual fiber configurations. Displacement sensitivities of 25 Å have been measured using 50-μm core diam multimode fibers, with a light emitting diode source. Theoretical sensitivities of the order of 0.01 nm are predicted with the use of single-mode fibers.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. O. Cook, C. W. Hamm, “Fiber Optic Lever Displacement Transducer,” Appl. Opt. 18, 3230–3241 (1979).
    [CrossRef] [PubMed]
  2. w. B. Spillman, D. H. McMahon, “Frustrated-total-internal-reflection multimode fiber-optic hydrophone,” Appl. Opt. 19, 113–117 (1980).
    [CrossRef] [PubMed]
  3. N. Lagakos, T. Litovitz, P. Macedo, R. Mohr, R. Meister, “Multimode Optical Fiber Displacement Sensor,” Appl. Opt. 20, 167–168 (1981).
    [CrossRef] [PubMed]
  4. W. B. Spillman, “Multimode Fiber-Optic Hydrophone Based on a SchlierenTechnique,” Appl. Opt. 20, 465–470 (1981).
    [CrossRef] [PubMed]
  5. F. W. Cuomo, “Pressure and pressure gradient fiber-optic lever hydrophones,” J. Acoust. Soc. Am. 73, 1848–857 (1983).
    [CrossRef]
  6. C. M. Lawson, V. J. Tekippe, “Fiber-Optic Diaphragm-Curvature Pressure Transducer,” Opt. Lett. 8, 286–288 (1983).
    [CrossRef] [PubMed]
  7. D. H. McMahon, R. A. Soref, L. E. Sheppard, “A sensitive fieldable photoelastic fiber-optic hydrophone,” IEEE/OSA J. Lightwave Tech. 2, 469–478 (1984).
    [CrossRef]
  8. J. S. Barton, M. Saoudi, “A fibre optic vortex flowmeter,” J. Phys. E 19, 64–6 (1986).
    [CrossRef]
  9. S. D. Cusworth, J. M. Senior, “A reflective optical sensing technique employing a GRIN rod lens,” J. Phys. E 20, 102–103 (1987).
    [CrossRef]
  10. N. Lagakos, J. H. Cole, J. A. Bucaro, “Microbend Fiber-Optic Sensor,” Appl. Opt. 26, 2171–2180 (1987).
    [CrossRef] [PubMed]
  11. B. Culshaw, “Optical fibre transducers,” Radio Electron. Eng. 52, 283–290 (1982).
    [CrossRef]
  12. C. M. Davis, “Fiber optic sensors: an overview,” Opt. Eng. 24, 347–351 (1985).
    [CrossRef]
  13. G. D. Pitt et al., “Optical-fibre sensors,” IEE Proc. Part J 132, 214–248 (1985).
  14. Mark Johnson, “Fiber optic displacement sensors for metrology and control,” Opt. Eng. 24, 961–965 (1985).
    [CrossRef]
  15. W. B. Spillman, R. L. Gravel, “Moving Fiber-Optic Hydrophone,” Opt. Lett. 5, 30–31 (1980).
    [CrossRef] [PubMed]
  16. G. A. Rines, “Fiber-Optic Accelerometer with Hydrophone Applications,” Appl. Opt. 20, 3453–3459 (1981).
    [CrossRef] [PubMed]
  17. T. P. Coursolle, P. J. Murphy, “Light modulation sensor in a vortex-shedding flowmeter,” U.S. Patent4,594,504 (1986).
  18. A. Yariv, Introduction to Optical Electronics, Second Edition (Holt, Rinehart & Winston, New York, 1976).
  19. K. Koizumi et al., SELFOCO®Handbook, (NSG America, Clark, NJ, 1980).

1987 (2)

S. D. Cusworth, J. M. Senior, “A reflective optical sensing technique employing a GRIN rod lens,” J. Phys. E 20, 102–103 (1987).
[CrossRef]

N. Lagakos, J. H. Cole, J. A. Bucaro, “Microbend Fiber-Optic Sensor,” Appl. Opt. 26, 2171–2180 (1987).
[CrossRef] [PubMed]

1986 (1)

J. S. Barton, M. Saoudi, “A fibre optic vortex flowmeter,” J. Phys. E 19, 64–6 (1986).
[CrossRef]

1985 (3)

C. M. Davis, “Fiber optic sensors: an overview,” Opt. Eng. 24, 347–351 (1985).
[CrossRef]

G. D. Pitt et al., “Optical-fibre sensors,” IEE Proc. Part J 132, 214–248 (1985).

Mark Johnson, “Fiber optic displacement sensors for metrology and control,” Opt. Eng. 24, 961–965 (1985).
[CrossRef]

1984 (1)

D. H. McMahon, R. A. Soref, L. E. Sheppard, “A sensitive fieldable photoelastic fiber-optic hydrophone,” IEEE/OSA J. Lightwave Tech. 2, 469–478 (1984).
[CrossRef]

1983 (2)

F. W. Cuomo, “Pressure and pressure gradient fiber-optic lever hydrophones,” J. Acoust. Soc. Am. 73, 1848–857 (1983).
[CrossRef]

C. M. Lawson, V. J. Tekippe, “Fiber-Optic Diaphragm-Curvature Pressure Transducer,” Opt. Lett. 8, 286–288 (1983).
[CrossRef] [PubMed]

1982 (1)

B. Culshaw, “Optical fibre transducers,” Radio Electron. Eng. 52, 283–290 (1982).
[CrossRef]

1981 (3)

1980 (2)

1979 (1)

Barton, J. S.

J. S. Barton, M. Saoudi, “A fibre optic vortex flowmeter,” J. Phys. E 19, 64–6 (1986).
[CrossRef]

Bucaro, J. A.

Cole, J. H.

Cook, R. O.

Coursolle, T. P.

T. P. Coursolle, P. J. Murphy, “Light modulation sensor in a vortex-shedding flowmeter,” U.S. Patent4,594,504 (1986).

Culshaw, B.

B. Culshaw, “Optical fibre transducers,” Radio Electron. Eng. 52, 283–290 (1982).
[CrossRef]

Cuomo, F. W.

F. W. Cuomo, “Pressure and pressure gradient fiber-optic lever hydrophones,” J. Acoust. Soc. Am. 73, 1848–857 (1983).
[CrossRef]

Cusworth, S. D.

S. D. Cusworth, J. M. Senior, “A reflective optical sensing technique employing a GRIN rod lens,” J. Phys. E 20, 102–103 (1987).
[CrossRef]

Davis, C. M.

C. M. Davis, “Fiber optic sensors: an overview,” Opt. Eng. 24, 347–351 (1985).
[CrossRef]

Gravel, R. L.

Hamm, C. W.

Johnson, Mark

Mark Johnson, “Fiber optic displacement sensors for metrology and control,” Opt. Eng. 24, 961–965 (1985).
[CrossRef]

Koizumi, K.

K. Koizumi et al., SELFOCO®Handbook, (NSG America, Clark, NJ, 1980).

Lagakos, N.

Lawson, C. M.

Litovitz, T.

Macedo, P.

McMahon, D. H.

D. H. McMahon, R. A. Soref, L. E. Sheppard, “A sensitive fieldable photoelastic fiber-optic hydrophone,” IEEE/OSA J. Lightwave Tech. 2, 469–478 (1984).
[CrossRef]

w. B. Spillman, D. H. McMahon, “Frustrated-total-internal-reflection multimode fiber-optic hydrophone,” Appl. Opt. 19, 113–117 (1980).
[CrossRef] [PubMed]

Meister, R.

Mohr, R.

Murphy, P. J.

T. P. Coursolle, P. J. Murphy, “Light modulation sensor in a vortex-shedding flowmeter,” U.S. Patent4,594,504 (1986).

Pitt, G. D.

G. D. Pitt et al., “Optical-fibre sensors,” IEE Proc. Part J 132, 214–248 (1985).

Rines, G. A.

Saoudi, M.

J. S. Barton, M. Saoudi, “A fibre optic vortex flowmeter,” J. Phys. E 19, 64–6 (1986).
[CrossRef]

Senior, J. M.

S. D. Cusworth, J. M. Senior, “A reflective optical sensing technique employing a GRIN rod lens,” J. Phys. E 20, 102–103 (1987).
[CrossRef]

Sheppard, L. E.

D. H. McMahon, R. A. Soref, L. E. Sheppard, “A sensitive fieldable photoelastic fiber-optic hydrophone,” IEEE/OSA J. Lightwave Tech. 2, 469–478 (1984).
[CrossRef]

Soref, R. A.

D. H. McMahon, R. A. Soref, L. E. Sheppard, “A sensitive fieldable photoelastic fiber-optic hydrophone,” IEEE/OSA J. Lightwave Tech. 2, 469–478 (1984).
[CrossRef]

Spillman, W. B.

Tekippe, V. J.

Yariv, A.

A. Yariv, Introduction to Optical Electronics, Second Edition (Holt, Rinehart & Winston, New York, 1976).

Appl. Opt. (6)

IEE Proc. Part J (1)

G. D. Pitt et al., “Optical-fibre sensors,” IEE Proc. Part J 132, 214–248 (1985).

IEEE/OSA J. Lightwave Tech. (1)

D. H. McMahon, R. A. Soref, L. E. Sheppard, “A sensitive fieldable photoelastic fiber-optic hydrophone,” IEEE/OSA J. Lightwave Tech. 2, 469–478 (1984).
[CrossRef]

J. Acoust. Soc. Am. (1)

F. W. Cuomo, “Pressure and pressure gradient fiber-optic lever hydrophones,” J. Acoust. Soc. Am. 73, 1848–857 (1983).
[CrossRef]

J. Phys. E (2)

J. S. Barton, M. Saoudi, “A fibre optic vortex flowmeter,” J. Phys. E 19, 64–6 (1986).
[CrossRef]

S. D. Cusworth, J. M. Senior, “A reflective optical sensing technique employing a GRIN rod lens,” J. Phys. E 20, 102–103 (1987).
[CrossRef]

Opt. Eng. (2)

Mark Johnson, “Fiber optic displacement sensors for metrology and control,” Opt. Eng. 24, 961–965 (1985).
[CrossRef]

C. M. Davis, “Fiber optic sensors: an overview,” Opt. Eng. 24, 347–351 (1985).
[CrossRef]

Opt. Lett. (2)

Radio Electron. Eng. (1)

B. Culshaw, “Optical fibre transducers,” Radio Electron. Eng. 52, 283–290 (1982).
[CrossRef]

Other (3)

T. P. Coursolle, P. J. Murphy, “Light modulation sensor in a vortex-shedding flowmeter,” U.S. Patent4,594,504 (1986).

A. Yariv, Introduction to Optical Electronics, Second Edition (Holt, Rinehart & Winston, New York, 1976).

K. Koizumi et al., SELFOCO®Handbook, (NSG America, Clark, NJ, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Fiber optic displacement sensor using a graded index lens.

Fig. 2
Fig. 2

Normalized sensor transmittance as a function of the relative lens/fiber displacement. Theoretical curve (- - -). Experimental data (—).

Fig. 3
Fig. 3

Displacement resolution as a function of optical power for several values of signal to noise, using the values d = 50 μm, B n = 100 Hz, η = 0.5 A/W, and α = 1.385.

Fig. 4
Fig. 4

Alignment factor as a function of the relative displacement between the image and the receiving fiber.

Fig. 5
Fig. 5

Displacement resolution as a function of the initial offset position for several optical power levels, using d = 50 μm, B n = 100 Hz, η = A/W, S/N = 1, and I dk = 5 nA.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

T ( a ) = 2 / π { cos - 1 ( a / d ) - ( a / d ) [ 1 - ( a / d ) 2 ] 1 / 2 } ,
T ( x ) = 2 / π { cos - 1 ( 2 x / d ) - ( 2 x / d ) [ 1 - ( 2 x / d ) 2 ] 1 / 2 } ,
I ( x ) = P o η T ( x ) ,
I s = [ - 8 P o η / ( π d ) ] [ 1 - ( 2 x / d ) 2 ] 1 / 2 Δ x .
I n = [ 2 e P o η B n T ( x ) ] 1 / 2 ,
S / N = [ 32 η P o / ( e B n ) ] 1 / 2 α ( x ) Δ x / ( π d ) ,
α ( x ) = { [ 1 - ( 2 x / d ) 2 ] / T ( x ) } 1 / 2 .
Δ x = S / N [ π d / α ( x ) ] [ e B n / ( 32 η P o ) ] 1 / 2 .
I n = { 2 e B n [ P o η T ( x ) + I d k ] } 1 / 2 ,
Δ z = [ e B n / ( 8 η P o ) ] 1 / 2 [ d + 2 z ( N A ) ] 2 / ( N A d ) ,

Metrics