Abstract

A spectroscopic study of gliding ablative discharges has been carried out on N2, CO2, and lasing mixtures of TEA CO2 lasers. By spectroscopic plasma diagnosis techniques (local thermodynamic equilibrium assumed) we observed an inhomogeneous transversal distribution of the ablated elements. Electronic temperature and density transversal distributions are, however, fairly homogeneous. We also found a different ablation threshold for two ablated substrate elements. The ablation threshold seems to be related to the plasma current density. The results are of practical interest in the UV preionization of TEA CO2 lasers.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. E. Beverly, “Light Emission from High-Current Surface-Spark Discharges,” Prog. Opt. 16, 359–411 (1978).
  2. D. Yu. Zaroslov, G. P. Kuzmin, J. F. Tarasenko, “Sliding Discharge in CO2 in Excimas Lasers,” Radio Eng. Electron. Phys. 29, 1–22 (1984).
  3. Yu. A. Kolesnikov, A. A. Kotov, “Characteristics of a High-Pressure CO2 Laser with Ultraviolet Preionization by Surface Channel Discharges,” Sov. J. Quantum Electron. 17, 888–890 (1987).
    [CrossRef]
  4. J. Sanchez Sanz, J. M. Guerra Perez, “Background Radiation in Low-Pressure Flashlamps from Ablation Phenomena,” Appl. Opt. 26, 127–130 (1987).
    [CrossRef]
  5. F. Bastien, “Spectroscopic Diagnostics in Gas Discharges,” in Electrical Breakdown and Discharges in Gases, Macroscopic Processes and Discharges, E. E. Kunhardt, L. H. Luessen, Eds. (Plenum, New York, 1983), p. 267.
  6. J. Sanchez Sanz, J. M. Guerra Perez, “Low-Pressure Flash-lamps: Influence of the Wall Ablation Phenomena on Their Output Characteristic,” Appl. Opt. 24, 1940–1946 (1985).
    [CrossRef]
  7. D. B. Chang, J. E. Drummond, R. B. Hall, “High-Power Laser Radiation Interaction with Quartz,” J. Appl. Phys. 41, 4851–4855 (1970).
    [CrossRef]

1987 (2)

Yu. A. Kolesnikov, A. A. Kotov, “Characteristics of a High-Pressure CO2 Laser with Ultraviolet Preionization by Surface Channel Discharges,” Sov. J. Quantum Electron. 17, 888–890 (1987).
[CrossRef]

J. Sanchez Sanz, J. M. Guerra Perez, “Background Radiation in Low-Pressure Flashlamps from Ablation Phenomena,” Appl. Opt. 26, 127–130 (1987).
[CrossRef]

1985 (1)

1984 (1)

D. Yu. Zaroslov, G. P. Kuzmin, J. F. Tarasenko, “Sliding Discharge in CO2 in Excimas Lasers,” Radio Eng. Electron. Phys. 29, 1–22 (1984).

1978 (1)

R. E. Beverly, “Light Emission from High-Current Surface-Spark Discharges,” Prog. Opt. 16, 359–411 (1978).

1970 (1)

D. B. Chang, J. E. Drummond, R. B. Hall, “High-Power Laser Radiation Interaction with Quartz,” J. Appl. Phys. 41, 4851–4855 (1970).
[CrossRef]

Bastien, F.

F. Bastien, “Spectroscopic Diagnostics in Gas Discharges,” in Electrical Breakdown and Discharges in Gases, Macroscopic Processes and Discharges, E. E. Kunhardt, L. H. Luessen, Eds. (Plenum, New York, 1983), p. 267.

Beverly, R. E.

R. E. Beverly, “Light Emission from High-Current Surface-Spark Discharges,” Prog. Opt. 16, 359–411 (1978).

Chang, D. B.

D. B. Chang, J. E. Drummond, R. B. Hall, “High-Power Laser Radiation Interaction with Quartz,” J. Appl. Phys. 41, 4851–4855 (1970).
[CrossRef]

Drummond, J. E.

D. B. Chang, J. E. Drummond, R. B. Hall, “High-Power Laser Radiation Interaction with Quartz,” J. Appl. Phys. 41, 4851–4855 (1970).
[CrossRef]

Guerra Perez, J. M.

Hall, R. B.

D. B. Chang, J. E. Drummond, R. B. Hall, “High-Power Laser Radiation Interaction with Quartz,” J. Appl. Phys. 41, 4851–4855 (1970).
[CrossRef]

Kolesnikov, Yu. A.

Yu. A. Kolesnikov, A. A. Kotov, “Characteristics of a High-Pressure CO2 Laser with Ultraviolet Preionization by Surface Channel Discharges,” Sov. J. Quantum Electron. 17, 888–890 (1987).
[CrossRef]

Kotov, A. A.

Yu. A. Kolesnikov, A. A. Kotov, “Characteristics of a High-Pressure CO2 Laser with Ultraviolet Preionization by Surface Channel Discharges,” Sov. J. Quantum Electron. 17, 888–890 (1987).
[CrossRef]

Kuzmin, G. P.

D. Yu. Zaroslov, G. P. Kuzmin, J. F. Tarasenko, “Sliding Discharge in CO2 in Excimas Lasers,” Radio Eng. Electron. Phys. 29, 1–22 (1984).

Sanchez Sanz, J.

Tarasenko, J. F.

D. Yu. Zaroslov, G. P. Kuzmin, J. F. Tarasenko, “Sliding Discharge in CO2 in Excimas Lasers,” Radio Eng. Electron. Phys. 29, 1–22 (1984).

Zaroslov, D. Yu.

D. Yu. Zaroslov, G. P. Kuzmin, J. F. Tarasenko, “Sliding Discharge in CO2 in Excimas Lasers,” Radio Eng. Electron. Phys. 29, 1–22 (1984).

Appl. Opt. (2)

J. Appl. Phys. (1)

D. B. Chang, J. E. Drummond, R. B. Hall, “High-Power Laser Radiation Interaction with Quartz,” J. Appl. Phys. 41, 4851–4855 (1970).
[CrossRef]

Prog. Opt. (1)

R. E. Beverly, “Light Emission from High-Current Surface-Spark Discharges,” Prog. Opt. 16, 359–411 (1978).

Radio Eng. Electron. Phys. (1)

D. Yu. Zaroslov, G. P. Kuzmin, J. F. Tarasenko, “Sliding Discharge in CO2 in Excimas Lasers,” Radio Eng. Electron. Phys. 29, 1–22 (1984).

Sov. J. Quantum Electron. (1)

Yu. A. Kolesnikov, A. A. Kotov, “Characteristics of a High-Pressure CO2 Laser with Ultraviolet Preionization by Surface Channel Discharges,” Sov. J. Quantum Electron. 17, 888–890 (1987).
[CrossRef]

Other (1)

F. Bastien, “Spectroscopic Diagnostics in Gas Discharges,” in Electrical Breakdown and Discharges in Gases, Macroscopic Processes and Discharges, E. E. Kunhardt, L. H. Luessen, Eds. (Plenum, New York, 1983), p. 267.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Excitation circuit: Vc, charge potential; Cs, storage condenser; Cp, interelectrode capacitance. Lo + Li, total induction; CF, confinement electrode width.

Fig. 2
Fig. 2

Plasma transversal spectroscopic scanning. Ratio of I(Si ii 413.1) to I(Nii 339.5) vs the distance to the dielectric surface.

Fig. 3
Fig. 3

Electronic temperature vs the distance to the dielectric surface.

Fig. 4
Fig. 4

Ablation against the maximum current. Ratios of I(Si ii, 413.1) and I(Ca ii 393.4) to I(N ii 399.5).

Fig. 5
Fig. 5

Emitted spectra for different confinement widths: (a) CF = 15; (b) CF = 10; (c) CF = 5; (d) CF = 2 mm (wavelength in angstroms).

Fig. 6
Fig. 6

Ratios of I(Si ii 385.6) and I(Ca ii 393.4) to I(N ii 399.5) vs the inverse of the confinement width CF.

Fig. 7
Fig. 7

Plasma emitted spectra with two gases at different pressures: (a) 100; (b) 150; (c) 200; (d) 300; (e) 500; (f) 600 Torr (wavelength in angstroms).

Fig. 8
Fig. 8

Ratio of ablation elements lines to I(N ii 399.5) vs pressure.

Fig. 9
Fig. 9

Electronic temperature against the storage condenser capacity Cs for several confinement widths.

Fig. 10
Fig. 10

Variation of the emitted radiation energy with the storage condenser energy for several confinements.

Tables (3)

Tables Icon

Table I Threshold Current per Unit of Plasma Width It for Si and Ca in Atmosphere of N2 at 400 and 200 Torr

Tables Icon

Table II Plasma Electronic Temperature vs the Confinement Parameter CF

Tables Icon

Table III Plasma Electronic Density and Electronic Temperature as Functions of Pressure

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d n d t d i d t | max
n i - i t ,
I n exp ( E / k t ) / Z ( T ) .
I [ Si ] I [ N ] , I [ Ca ] I [ N ] i max - ( i max ) t ,

Metrics