Abstract

Multilayer x-ray mirrors have been deposited using a dc triode sputtering system, which incorporates an accurate method of thickness monitoring based on the dependence of the deposition rate on the target current. Thickness can be controlled with an accuracy of better than 0.1 Å. High efficiency W–C and Ni–C multilayer mirrors have been synthesized and tested at 1.54-Å (CuKα) and 44.79-Å (CKα). Absolute reflectivity measurements at λ = 44.79-Å (CKα) have been carried out. In this case the incident beam is previously polarized by a premonochromator equipped with a pair of parallel-plane multilayer mirrors fixed at an angle close to the Brewster (θ ≃ 45°). Thus the measured reflectivities are not affected by a progressive variation of the P-component.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. P. Haelbich, A. Segmuller, E. Spiller, “Smooth Multilayer Films Suitable for X-Ray Mirrors,” Appl. Phys. Lett. 34, 184–186 (1979).
    [CrossRef]
  2. T. W. Barbee, “Sputtered Layered Synthetic Microstructure (LSM) Dispersion Elements,” AIP Conf. Proc. 75, 131–145 (1981).
    [CrossRef]
  3. J. Y. Gilfrich, D. J. Nagel, T. W. Barbee, “Layered Synthetic Microstructure as Dispersing Devices in X-Ray Spectrometers,” Appl. Spectrosc. 36, 58–61 (1982).
    [CrossRef]
  4. A. Khandar, P. Dhez, “Multilayer X-Ray Polarizers,” Proc. Soc. Photo-Opt. Instrum. Eng. 563, 158–163 (1985).
  5. E. Spiller, “Evaporated Multilayer Dispersion Elements for Soft X-Rays,” AIP Conf. Proc. 75, 124–130 (1981).
    [CrossRef]
  6. E. Spiller, “Experience with the in situ Monitor System for the Fabrication of X-Ray Mirrors,” Proc. Soc. Photo-Opt. Instrum. Eng. 563, 367–375 (1985).
  7. T. W. Barbee, “Multilayer for X-Ray Optics,” Proc. Soc. Photo-Opt. Instrum. Eng. 563, 2–28 (1985).
  8. C. Sella, K. B. Youn, R. Barchewitz, M. Arbaoui, “Multilayer X-Ray Mirrors Prepared by Triode Sputtering Using a New Method of Film Thickness Monitoring,” Vacuum 36, 121–123 (1986).
    [CrossRef]
  9. R. Krishnan, K. B. Youn, C. Sella, “Magnetic Studies in Multilayer Ni–C Films,” J. Appl. Phys. 61, 4073–4075 (1987).
    [CrossRef]
  10. L. Golub, G. Nystrom, E. Spiller, J. Wilczynski, “Construction of Multilayered X-Ray Telescope for Solar Coronal Studies from Space,” Proc. Soc. Photo-Opt. Instrum. Eng. 563, 266–274 (1985).
  11. M. Arbaoui, J. M. Andre, P. Couillaux, R. Barchewitz, “Versatile X-UV Spectrogoniometer with Multilayer Interference Mirrors,” Rev. Sci. Instrum. 56, 2055–2058 (1985).
    [CrossRef]
  12. B. L. Henke, “Low Energy X-Ray Spectroscopy with Crystals and Multilayers,” AIP Conf. Proc. 75, 85–96 (1981).
    [CrossRef]
  13. B. L. Henke, “Characterization of Multilayer X-Ray Analyzers: Models and Measurements,” Opt. Eng. 25, 937–947 (1986).
    [CrossRef]
  14. B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low-Energy X-Ray Interaction Coefficients: Photoabsorption Scattering and Reflection, E = 100–2000 eV, Z = 1–94.” At. Data Nucl. Data Tables 27, 1–144 (1982).
    [CrossRef]
  15. R. J. Bartlett, D. R. Kania, W. J. Trela, E. Kallne, P. Lee, E. Spiller, “Performance of Multilayer Dispersion Elements from 80 to 500 eV,” Proc. Soc. Photo-Opt. Instrum. Eng. 447, 23–26 (1984).

1987 (1)

R. Krishnan, K. B. Youn, C. Sella, “Magnetic Studies in Multilayer Ni–C Films,” J. Appl. Phys. 61, 4073–4075 (1987).
[CrossRef]

1986 (2)

B. L. Henke, “Characterization of Multilayer X-Ray Analyzers: Models and Measurements,” Opt. Eng. 25, 937–947 (1986).
[CrossRef]

C. Sella, K. B. Youn, R. Barchewitz, M. Arbaoui, “Multilayer X-Ray Mirrors Prepared by Triode Sputtering Using a New Method of Film Thickness Monitoring,” Vacuum 36, 121–123 (1986).
[CrossRef]

1985 (5)

E. Spiller, “Experience with the in situ Monitor System for the Fabrication of X-Ray Mirrors,” Proc. Soc. Photo-Opt. Instrum. Eng. 563, 367–375 (1985).

T. W. Barbee, “Multilayer for X-Ray Optics,” Proc. Soc. Photo-Opt. Instrum. Eng. 563, 2–28 (1985).

A. Khandar, P. Dhez, “Multilayer X-Ray Polarizers,” Proc. Soc. Photo-Opt. Instrum. Eng. 563, 158–163 (1985).

L. Golub, G. Nystrom, E. Spiller, J. Wilczynski, “Construction of Multilayered X-Ray Telescope for Solar Coronal Studies from Space,” Proc. Soc. Photo-Opt. Instrum. Eng. 563, 266–274 (1985).

M. Arbaoui, J. M. Andre, P. Couillaux, R. Barchewitz, “Versatile X-UV Spectrogoniometer with Multilayer Interference Mirrors,” Rev. Sci. Instrum. 56, 2055–2058 (1985).
[CrossRef]

1984 (1)

R. J. Bartlett, D. R. Kania, W. J. Trela, E. Kallne, P. Lee, E. Spiller, “Performance of Multilayer Dispersion Elements from 80 to 500 eV,” Proc. Soc. Photo-Opt. Instrum. Eng. 447, 23–26 (1984).

1982 (2)

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low-Energy X-Ray Interaction Coefficients: Photoabsorption Scattering and Reflection, E = 100–2000 eV, Z = 1–94.” At. Data Nucl. Data Tables 27, 1–144 (1982).
[CrossRef]

J. Y. Gilfrich, D. J. Nagel, T. W. Barbee, “Layered Synthetic Microstructure as Dispersing Devices in X-Ray Spectrometers,” Appl. Spectrosc. 36, 58–61 (1982).
[CrossRef]

1981 (3)

E. Spiller, “Evaporated Multilayer Dispersion Elements for Soft X-Rays,” AIP Conf. Proc. 75, 124–130 (1981).
[CrossRef]

T. W. Barbee, “Sputtered Layered Synthetic Microstructure (LSM) Dispersion Elements,” AIP Conf. Proc. 75, 131–145 (1981).
[CrossRef]

B. L. Henke, “Low Energy X-Ray Spectroscopy with Crystals and Multilayers,” AIP Conf. Proc. 75, 85–96 (1981).
[CrossRef]

1979 (1)

R. P. Haelbich, A. Segmuller, E. Spiller, “Smooth Multilayer Films Suitable for X-Ray Mirrors,” Appl. Phys. Lett. 34, 184–186 (1979).
[CrossRef]

Andre, J. M.

M. Arbaoui, J. M. Andre, P. Couillaux, R. Barchewitz, “Versatile X-UV Spectrogoniometer with Multilayer Interference Mirrors,” Rev. Sci. Instrum. 56, 2055–2058 (1985).
[CrossRef]

Arbaoui, M.

C. Sella, K. B. Youn, R. Barchewitz, M. Arbaoui, “Multilayer X-Ray Mirrors Prepared by Triode Sputtering Using a New Method of Film Thickness Monitoring,” Vacuum 36, 121–123 (1986).
[CrossRef]

M. Arbaoui, J. M. Andre, P. Couillaux, R. Barchewitz, “Versatile X-UV Spectrogoniometer with Multilayer Interference Mirrors,” Rev. Sci. Instrum. 56, 2055–2058 (1985).
[CrossRef]

Barbee, T. W.

T. W. Barbee, “Multilayer for X-Ray Optics,” Proc. Soc. Photo-Opt. Instrum. Eng. 563, 2–28 (1985).

J. Y. Gilfrich, D. J. Nagel, T. W. Barbee, “Layered Synthetic Microstructure as Dispersing Devices in X-Ray Spectrometers,” Appl. Spectrosc. 36, 58–61 (1982).
[CrossRef]

T. W. Barbee, “Sputtered Layered Synthetic Microstructure (LSM) Dispersion Elements,” AIP Conf. Proc. 75, 131–145 (1981).
[CrossRef]

Barchewitz, R.

C. Sella, K. B. Youn, R. Barchewitz, M. Arbaoui, “Multilayer X-Ray Mirrors Prepared by Triode Sputtering Using a New Method of Film Thickness Monitoring,” Vacuum 36, 121–123 (1986).
[CrossRef]

M. Arbaoui, J. M. Andre, P. Couillaux, R. Barchewitz, “Versatile X-UV Spectrogoniometer with Multilayer Interference Mirrors,” Rev. Sci. Instrum. 56, 2055–2058 (1985).
[CrossRef]

Bartlett, R. J.

R. J. Bartlett, D. R. Kania, W. J. Trela, E. Kallne, P. Lee, E. Spiller, “Performance of Multilayer Dispersion Elements from 80 to 500 eV,” Proc. Soc. Photo-Opt. Instrum. Eng. 447, 23–26 (1984).

Couillaux, P.

M. Arbaoui, J. M. Andre, P. Couillaux, R. Barchewitz, “Versatile X-UV Spectrogoniometer with Multilayer Interference Mirrors,” Rev. Sci. Instrum. 56, 2055–2058 (1985).
[CrossRef]

Dhez, P.

A. Khandar, P. Dhez, “Multilayer X-Ray Polarizers,” Proc. Soc. Photo-Opt. Instrum. Eng. 563, 158–163 (1985).

Fujikawa, B. K.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low-Energy X-Ray Interaction Coefficients: Photoabsorption Scattering and Reflection, E = 100–2000 eV, Z = 1–94.” At. Data Nucl. Data Tables 27, 1–144 (1982).
[CrossRef]

Gilfrich, J. Y.

Golub, L.

L. Golub, G. Nystrom, E. Spiller, J. Wilczynski, “Construction of Multilayered X-Ray Telescope for Solar Coronal Studies from Space,” Proc. Soc. Photo-Opt. Instrum. Eng. 563, 266–274 (1985).

Haelbich, R. P.

R. P. Haelbich, A. Segmuller, E. Spiller, “Smooth Multilayer Films Suitable for X-Ray Mirrors,” Appl. Phys. Lett. 34, 184–186 (1979).
[CrossRef]

Henke, B. L.

B. L. Henke, “Characterization of Multilayer X-Ray Analyzers: Models and Measurements,” Opt. Eng. 25, 937–947 (1986).
[CrossRef]

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low-Energy X-Ray Interaction Coefficients: Photoabsorption Scattering and Reflection, E = 100–2000 eV, Z = 1–94.” At. Data Nucl. Data Tables 27, 1–144 (1982).
[CrossRef]

B. L. Henke, “Low Energy X-Ray Spectroscopy with Crystals and Multilayers,” AIP Conf. Proc. 75, 85–96 (1981).
[CrossRef]

Kallne, E.

R. J. Bartlett, D. R. Kania, W. J. Trela, E. Kallne, P. Lee, E. Spiller, “Performance of Multilayer Dispersion Elements from 80 to 500 eV,” Proc. Soc. Photo-Opt. Instrum. Eng. 447, 23–26 (1984).

Kania, D. R.

R. J. Bartlett, D. R. Kania, W. J. Trela, E. Kallne, P. Lee, E. Spiller, “Performance of Multilayer Dispersion Elements from 80 to 500 eV,” Proc. Soc. Photo-Opt. Instrum. Eng. 447, 23–26 (1984).

Khandar, A.

A. Khandar, P. Dhez, “Multilayer X-Ray Polarizers,” Proc. Soc. Photo-Opt. Instrum. Eng. 563, 158–163 (1985).

Krishnan, R.

R. Krishnan, K. B. Youn, C. Sella, “Magnetic Studies in Multilayer Ni–C Films,” J. Appl. Phys. 61, 4073–4075 (1987).
[CrossRef]

Lee, P.

R. J. Bartlett, D. R. Kania, W. J. Trela, E. Kallne, P. Lee, E. Spiller, “Performance of Multilayer Dispersion Elements from 80 to 500 eV,” Proc. Soc. Photo-Opt. Instrum. Eng. 447, 23–26 (1984).

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low-Energy X-Ray Interaction Coefficients: Photoabsorption Scattering and Reflection, E = 100–2000 eV, Z = 1–94.” At. Data Nucl. Data Tables 27, 1–144 (1982).
[CrossRef]

Nagel, D. J.

Nystrom, G.

L. Golub, G. Nystrom, E. Spiller, J. Wilczynski, “Construction of Multilayered X-Ray Telescope for Solar Coronal Studies from Space,” Proc. Soc. Photo-Opt. Instrum. Eng. 563, 266–274 (1985).

Segmuller, A.

R. P. Haelbich, A. Segmuller, E. Spiller, “Smooth Multilayer Films Suitable for X-Ray Mirrors,” Appl. Phys. Lett. 34, 184–186 (1979).
[CrossRef]

Sella, C.

R. Krishnan, K. B. Youn, C. Sella, “Magnetic Studies in Multilayer Ni–C Films,” J. Appl. Phys. 61, 4073–4075 (1987).
[CrossRef]

C. Sella, K. B. Youn, R. Barchewitz, M. Arbaoui, “Multilayer X-Ray Mirrors Prepared by Triode Sputtering Using a New Method of Film Thickness Monitoring,” Vacuum 36, 121–123 (1986).
[CrossRef]

Shimabukuro, R. L.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low-Energy X-Ray Interaction Coefficients: Photoabsorption Scattering and Reflection, E = 100–2000 eV, Z = 1–94.” At. Data Nucl. Data Tables 27, 1–144 (1982).
[CrossRef]

Spiller, E.

E. Spiller, “Experience with the in situ Monitor System for the Fabrication of X-Ray Mirrors,” Proc. Soc. Photo-Opt. Instrum. Eng. 563, 367–375 (1985).

L. Golub, G. Nystrom, E. Spiller, J. Wilczynski, “Construction of Multilayered X-Ray Telescope for Solar Coronal Studies from Space,” Proc. Soc. Photo-Opt. Instrum. Eng. 563, 266–274 (1985).

R. J. Bartlett, D. R. Kania, W. J. Trela, E. Kallne, P. Lee, E. Spiller, “Performance of Multilayer Dispersion Elements from 80 to 500 eV,” Proc. Soc. Photo-Opt. Instrum. Eng. 447, 23–26 (1984).

E. Spiller, “Evaporated Multilayer Dispersion Elements for Soft X-Rays,” AIP Conf. Proc. 75, 124–130 (1981).
[CrossRef]

R. P. Haelbich, A. Segmuller, E. Spiller, “Smooth Multilayer Films Suitable for X-Ray Mirrors,” Appl. Phys. Lett. 34, 184–186 (1979).
[CrossRef]

Tanaka, T. J.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low-Energy X-Ray Interaction Coefficients: Photoabsorption Scattering and Reflection, E = 100–2000 eV, Z = 1–94.” At. Data Nucl. Data Tables 27, 1–144 (1982).
[CrossRef]

Trela, W. J.

R. J. Bartlett, D. R. Kania, W. J. Trela, E. Kallne, P. Lee, E. Spiller, “Performance of Multilayer Dispersion Elements from 80 to 500 eV,” Proc. Soc. Photo-Opt. Instrum. Eng. 447, 23–26 (1984).

Wilczynski, J.

L. Golub, G. Nystrom, E. Spiller, J. Wilczynski, “Construction of Multilayered X-Ray Telescope for Solar Coronal Studies from Space,” Proc. Soc. Photo-Opt. Instrum. Eng. 563, 266–274 (1985).

Youn, K. B.

R. Krishnan, K. B. Youn, C. Sella, “Magnetic Studies in Multilayer Ni–C Films,” J. Appl. Phys. 61, 4073–4075 (1987).
[CrossRef]

C. Sella, K. B. Youn, R. Barchewitz, M. Arbaoui, “Multilayer X-Ray Mirrors Prepared by Triode Sputtering Using a New Method of Film Thickness Monitoring,” Vacuum 36, 121–123 (1986).
[CrossRef]

AIP Conf. Proc. (3)

E. Spiller, “Evaporated Multilayer Dispersion Elements for Soft X-Rays,” AIP Conf. Proc. 75, 124–130 (1981).
[CrossRef]

T. W. Barbee, “Sputtered Layered Synthetic Microstructure (LSM) Dispersion Elements,” AIP Conf. Proc. 75, 131–145 (1981).
[CrossRef]

B. L. Henke, “Low Energy X-Ray Spectroscopy with Crystals and Multilayers,” AIP Conf. Proc. 75, 85–96 (1981).
[CrossRef]

Appl. Phys. Lett. (1)

R. P. Haelbich, A. Segmuller, E. Spiller, “Smooth Multilayer Films Suitable for X-Ray Mirrors,” Appl. Phys. Lett. 34, 184–186 (1979).
[CrossRef]

Appl. Spectrosc. (1)

At. Data Nucl. Data Tables (1)

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low-Energy X-Ray Interaction Coefficients: Photoabsorption Scattering and Reflection, E = 100–2000 eV, Z = 1–94.” At. Data Nucl. Data Tables 27, 1–144 (1982).
[CrossRef]

J. Appl. Phys. (1)

R. Krishnan, K. B. Youn, C. Sella, “Magnetic Studies in Multilayer Ni–C Films,” J. Appl. Phys. 61, 4073–4075 (1987).
[CrossRef]

Opt. Eng. (1)

B. L. Henke, “Characterization of Multilayer X-Ray Analyzers: Models and Measurements,” Opt. Eng. 25, 937–947 (1986).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (5)

R. J. Bartlett, D. R. Kania, W. J. Trela, E. Kallne, P. Lee, E. Spiller, “Performance of Multilayer Dispersion Elements from 80 to 500 eV,” Proc. Soc. Photo-Opt. Instrum. Eng. 447, 23–26 (1984).

L. Golub, G. Nystrom, E. Spiller, J. Wilczynski, “Construction of Multilayered X-Ray Telescope for Solar Coronal Studies from Space,” Proc. Soc. Photo-Opt. Instrum. Eng. 563, 266–274 (1985).

A. Khandar, P. Dhez, “Multilayer X-Ray Polarizers,” Proc. Soc. Photo-Opt. Instrum. Eng. 563, 158–163 (1985).

E. Spiller, “Experience with the in situ Monitor System for the Fabrication of X-Ray Mirrors,” Proc. Soc. Photo-Opt. Instrum. Eng. 563, 367–375 (1985).

T. W. Barbee, “Multilayer for X-Ray Optics,” Proc. Soc. Photo-Opt. Instrum. Eng. 563, 2–28 (1985).

Rev. Sci. Instrum. (1)

M. Arbaoui, J. M. Andre, P. Couillaux, R. Barchewitz, “Versatile X-UV Spectrogoniometer with Multilayer Interference Mirrors,” Rev. Sci. Instrum. 56, 2055–2058 (1985).
[CrossRef]

Vacuum (1)

C. Sella, K. B. Youn, R. Barchewitz, M. Arbaoui, “Multilayer X-Ray Mirrors Prepared by Triode Sputtering Using a New Method of Film Thickness Monitoring,” Vacuum 36, 121–123 (1986).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Triode sputtering system with thickness control monitoring.

Fig. 2
Fig. 2

Electrical sheet resistances of (a) W films and (b) Ni films vs thickness.

Fig. 3
Fig. 3

Microstructure and electron diffraction pattern of a W layer.

Fig. 4
Fig. 4

Microstructure and electron diffraction pattern of an oxidized W layer.

Fig. 5
Fig. 5

Transmission electron micrograph of a Ni–C multilayer and electron diffraction patterns for (A) tNi = 30 Å and (B) tNi = 60 Å.

Fig. 6
Fig. 6

Reflectivity curves at (a) λ = 1.54 Å and (b) λ = 44.79 Å for W–C multilayers deposited on two different substrates.

Fig. 7
Fig. 7

Low angle diffraction of a W–C multilayer at λ = 1.54 Å.

Fig. 8
Fig. 8

First-order Bragg peak intensities and widths at half-maximum for three W–C multilayers at λ = 44.79 Å.

Fig. 9
Fig. 9

Experimental setup: A, spectrogoniometer; B, two multilayer polarizers; C, pair of flat mirrors; D, channel electron multiplier; E, x-ray tube; F, pumps; G, slits; H, motor; I, couplings; J, optical encoder; K, sample holder.

Fig. 10
Fig. 10

Principle of absolute reflectivity measurements: A, x-ray tube; B, slits, C, pair of multilayers; D, sample; E, counter.

Fig. 11
Fig. 11

Computed S-polarized reflectivity (perpendicular component) after reflection on the first W–C multilayer mirror of the monochromator (C) is 18% for the CKα line (λ = 44.79 Å), while the P-Polarized reflectivity (parallel component) is negligible between 30 and 60°C.

Fig. 12
Fig. 12

Bragg peak width ΔE vs Bragg angle.

Fig. 13
Fig. 13

Experimental rocking curves of S-polarized CKα (λ = 44.79 Å) diffracted by (a) a PbOD Langmuir Blodgett crystal and (b) a Ni–C multilayer.

Fig. 14
Fig. 14

Experimental and theoretical rocking curves of S-polarized CKα (λ = 44.79 Å) diffracted by (a),(b) W–C multilayers and (c),(d) Ni–C multilayers.

Tables (1)

Tables Icon

Table I Experimental and Theoretical Results of Ni–C and W–C Multilayers at λ = 44.79 Å

Metrics