Abstract

To study the ozone spatial and temporal evolution in the atmosphere, lidar systems have proved to be adequate but have remained complex. We define in this paper the main characteristics of a UV DIAL system for ground based and airborne ozone measurements in the troposphere and the lower stratosphere both for daytime and nighttime operation. A multiwavelength lidar system using either Rayleigh/Mie signals or the Raman nitrogen signal, is discussed as a way to efficiently correct the ozone measurements from the systematic bias due to aerosol and other interference gases (i.e. SO2) in the lower troposphere. Two types of lasers (solid state and excimer) are compared, as both lasers are suitable for long term field operation and airborne use.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Logan, “Tropospheric Ozone: Seasonal Behavior, Trends, and Anthropogenic Influence,” J. Geophys. Res. 90, 10463–10482 (1985).
    [CrossRef]
  2. W. C. Chameides, “The Photochemical Role of Tropospheric Nitrogen Oxides,” Geophys. Res. Lett. 5, 17–20 (1978).
    [CrossRef]
  3. J. Fishman, S. Solomon, P. J. Crutzen, “Observational and Theoretical Evidence in Support of a Significant In-situ Photochemical Source of Tropospheric Ozone,” Tellus 31, 432–446 (1979).
    [CrossRef]
  4. J. Fishman, “Ozone in the Troposphere,” in Ozone in the Free Atmosphere166, R. Whitten, S. Prasad, Eds. (Van Nostrand Reinhold, New York1985).
  5. J. Pelon, G. Mégie, “Ozone Monitoring in the Troposphere and the Lower Stratosphere: Evaluation and Operation of a Ground Based Lidar Station,” J. Geophys. Res. 87, C7, 4947–4955 (1982).
    [CrossRef]
  6. E. V. Browell, E. F. Danielsen, S. Ismail, G. L. Gregory, S. M. Beck, “Tropopause Fold Structure Determined from Airborne Lidar an In situ Measurements,” J. Geophys. Res. 92, D2, 2112–2120 (1987).
    [CrossRef]
  7. R. M. Schotland, “Error in the Lidar Measurement of Atmospheric Gases by Differential Absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
    [CrossRef]
  8. G. Mgie, R. T. Menzies, “Complementarity of UV and IR Differential Absorption Lidar for Global Measurements of Atmospheric Species,” Appl. Opt. 19, 1173–1183 (1980).
    [CrossRef]
  9. K. Asai, T. Itabe, T. Igarashi, “Range Resolved Measurements of Atmospheric Ozone Using a Differential-Absorption CO2 Laser Radar,” Appl. Phys. Lett. 35, 60–62 (1979).
    [CrossRef]
  10. O. Uchino, M. Tokunaga, M. Maeda, Y. Miyazoe, “Differential Absorption Lidar Measurement of Tropospheric Ozone with Excimer–Raman Hybrid Laser,” Opt. Lett. 8, 347–349 (1983).
    [CrossRef] [PubMed]
  11. H. Komine, “Stimulated Vibrational Raman Scattering in HD,” J. Quant. Electr. 22, 520 (1986).
    [CrossRef]
  12. U.S. Standard Atmosphere (1976), NOAA, NASA, USAF, US Government Printing Office, Washington, D.C., p. 227.
  13. A. J. Krueger, R. A. Minzer, “A Mid-latitude Ozone Model for the 1976 U.S. Standard Atmosphere,” J. Geophys. Res. 81, 4477–4481 (1976).
    [CrossRef]
  14. F. X. Kneizys et al., “Atmospheric Transmittance/radiance: Computer Code Lowtran 6,” AFGL-TR-80-0067, Feb.1980, Air Force Geophysics Laboratory, Bedford, Mass.
  15. J. M. Prospero, T. N. Carlson, “Vertical and Areal Distribution of Saharan Dust over the Western Equatorial North Atlantic Ocean,” J. Geophys. Res. 77, 5255–5265 (1972).
    [CrossRef]
  16. T. N. Carlson, R. S. Caverly, “Radiative Characteristics of Saharan Dust at Solar Wavelengths,” J. Geophys. Res. 82, 3141–3152 (1977).
    [CrossRef]
  17. R. Reiter, H. Jäger, W. Carnuth, W. Funk, “The El Chichon Cloud Over Central Europe Observed by lidar at Garnmisch-Partenkirchen During 1982,” Geophys. Res. Lett. 10, 1001–1004 (1983).
    [CrossRef]
  18. M. J. Post, “Atmospheric Purging of El Chichon Debris,” J. Geophys. Res. 91, 5222–5228 (1986).
    [CrossRef]
  19. E. P. Shettle, R. W. Fenn, “Models of the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on their Optical properties,” AFGL-TR-79-0214 (ADA 085951) (1979).
  20. J. A. Reagan, J. D. Spinhirne, D. M. Byrne, D. W. Thomson, R. G. de Pena, Y. Mamane, “Atmospheric Particulate Properties Inferred from Lidar and Solar Radiometer Observations Compared with In-Situ Aircraft Measurements: A Case Study,” J. Appl. Meteorol. 16, 911–928 (1977).
    [CrossRef]
  21. A. M. Bass, R. J. Paur, “Ultraviolet Absorption Cross-Sections of Ozone: Measurements, Results and Error Analysis,” in Proceedings, Quadriennal Ozone Symposium, Halkidiki, Greece (Reidel, Hingham, Mass, 1984), p. 606.
  22. D. J. Brassington, “Sulfur Dioxide Absorption Cross-Section Measurements from 290 nm to 317 nm,” Appl. Opt. 20, 3774–3779 (1981).
    [CrossRef] [PubMed]
  23. D. R. Martin, “Kinetics of Sulfur Dioxide Fluorescence,” Report LBL-1199, Lawrence Berkeley Laboratory, Univ. of California, Berkeley, California (1973).
  24. A. Papayannis, M. Kompitsas, S. Cohen, “Dye Laser SO2 Absorption Cross-Section Measurements at 266 nm for DIAL Ozone Applications,” in Proceedings, New Laser Technologies and Applications, 1st GR-I International Conference, Olympia, Greece, A. Carabelas, T. Letardi Ed., (1988), p. 509.
  25. A. M. Bass, A. E. Ledford, A. H. Lauffer, “Extinction Coefficients of NO2 and N2O4,” J. Res. Nat. Bur. Stand. A80, 143–166 (1976).
    [CrossRef]
  26. E. V. Browell, S. Ismail, S. Shipley, “Ultraviolet DIAL Measurements of O3 Profiles in Regions of Spatially Inhomogeneous Aerosols,” Appl. Opt. 24, 2827–2836 (1985).
    [CrossRef] [PubMed]
  27. D. Renaud, R. Capitini, “Boundary Layer Wafer Vapor Probing with a Solar Blind Raman Lidar: Validations, Meteorological Observations and Prospects,” J. Atmos. Oceanic Technol. 5, 585 (1988).
    [CrossRef]
  28. J. Potter, “Two Frequency Lidar Inversion Technique,” Appl. Opt. 26, 1250–1256 (1987).
    [CrossRef] [PubMed]
  29. J. D. Klett, “Lidar Inversion with Variable Backscatter/Extinction Ratios,” Appl. Opt. 24, 1638–1643 (1985).
    [CrossRef] [PubMed]

1988 (1)

D. Renaud, R. Capitini, “Boundary Layer Wafer Vapor Probing with a Solar Blind Raman Lidar: Validations, Meteorological Observations and Prospects,” J. Atmos. Oceanic Technol. 5, 585 (1988).
[CrossRef]

1987 (2)

J. Potter, “Two Frequency Lidar Inversion Technique,” Appl. Opt. 26, 1250–1256 (1987).
[CrossRef] [PubMed]

E. V. Browell, E. F. Danielsen, S. Ismail, G. L. Gregory, S. M. Beck, “Tropopause Fold Structure Determined from Airborne Lidar an In situ Measurements,” J. Geophys. Res. 92, D2, 2112–2120 (1987).
[CrossRef]

1986 (2)

H. Komine, “Stimulated Vibrational Raman Scattering in HD,” J. Quant. Electr. 22, 520 (1986).
[CrossRef]

M. J. Post, “Atmospheric Purging of El Chichon Debris,” J. Geophys. Res. 91, 5222–5228 (1986).
[CrossRef]

1985 (3)

1983 (2)

R. Reiter, H. Jäger, W. Carnuth, W. Funk, “The El Chichon Cloud Over Central Europe Observed by lidar at Garnmisch-Partenkirchen During 1982,” Geophys. Res. Lett. 10, 1001–1004 (1983).
[CrossRef]

O. Uchino, M. Tokunaga, M. Maeda, Y. Miyazoe, “Differential Absorption Lidar Measurement of Tropospheric Ozone with Excimer–Raman Hybrid Laser,” Opt. Lett. 8, 347–349 (1983).
[CrossRef] [PubMed]

1982 (1)

J. Pelon, G. Mégie, “Ozone Monitoring in the Troposphere and the Lower Stratosphere: Evaluation and Operation of a Ground Based Lidar Station,” J. Geophys. Res. 87, C7, 4947–4955 (1982).
[CrossRef]

1981 (1)

1980 (1)

1979 (3)

K. Asai, T. Itabe, T. Igarashi, “Range Resolved Measurements of Atmospheric Ozone Using a Differential-Absorption CO2 Laser Radar,” Appl. Phys. Lett. 35, 60–62 (1979).
[CrossRef]

J. Fishman, S. Solomon, P. J. Crutzen, “Observational and Theoretical Evidence in Support of a Significant In-situ Photochemical Source of Tropospheric Ozone,” Tellus 31, 432–446 (1979).
[CrossRef]

E. P. Shettle, R. W. Fenn, “Models of the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on their Optical properties,” AFGL-TR-79-0214 (ADA 085951) (1979).

1978 (1)

W. C. Chameides, “The Photochemical Role of Tropospheric Nitrogen Oxides,” Geophys. Res. Lett. 5, 17–20 (1978).
[CrossRef]

1977 (2)

J. A. Reagan, J. D. Spinhirne, D. M. Byrne, D. W. Thomson, R. G. de Pena, Y. Mamane, “Atmospheric Particulate Properties Inferred from Lidar and Solar Radiometer Observations Compared with In-Situ Aircraft Measurements: A Case Study,” J. Appl. Meteorol. 16, 911–928 (1977).
[CrossRef]

T. N. Carlson, R. S. Caverly, “Radiative Characteristics of Saharan Dust at Solar Wavelengths,” J. Geophys. Res. 82, 3141–3152 (1977).
[CrossRef]

1976 (2)

A. J. Krueger, R. A. Minzer, “A Mid-latitude Ozone Model for the 1976 U.S. Standard Atmosphere,” J. Geophys. Res. 81, 4477–4481 (1976).
[CrossRef]

A. M. Bass, A. E. Ledford, A. H. Lauffer, “Extinction Coefficients of NO2 and N2O4,” J. Res. Nat. Bur. Stand. A80, 143–166 (1976).
[CrossRef]

1974 (1)

R. M. Schotland, “Error in the Lidar Measurement of Atmospheric Gases by Differential Absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
[CrossRef]

1972 (1)

J. M. Prospero, T. N. Carlson, “Vertical and Areal Distribution of Saharan Dust over the Western Equatorial North Atlantic Ocean,” J. Geophys. Res. 77, 5255–5265 (1972).
[CrossRef]

Asai, K.

K. Asai, T. Itabe, T. Igarashi, “Range Resolved Measurements of Atmospheric Ozone Using a Differential-Absorption CO2 Laser Radar,” Appl. Phys. Lett. 35, 60–62 (1979).
[CrossRef]

Bass, A. M.

A. M. Bass, A. E. Ledford, A. H. Lauffer, “Extinction Coefficients of NO2 and N2O4,” J. Res. Nat. Bur. Stand. A80, 143–166 (1976).
[CrossRef]

A. M. Bass, R. J. Paur, “Ultraviolet Absorption Cross-Sections of Ozone: Measurements, Results and Error Analysis,” in Proceedings, Quadriennal Ozone Symposium, Halkidiki, Greece (Reidel, Hingham, Mass, 1984), p. 606.

Beck, S. M.

E. V. Browell, E. F. Danielsen, S. Ismail, G. L. Gregory, S. M. Beck, “Tropopause Fold Structure Determined from Airborne Lidar an In situ Measurements,” J. Geophys. Res. 92, D2, 2112–2120 (1987).
[CrossRef]

Brassington, D. J.

Browell, E. V.

E. V. Browell, E. F. Danielsen, S. Ismail, G. L. Gregory, S. M. Beck, “Tropopause Fold Structure Determined from Airborne Lidar an In situ Measurements,” J. Geophys. Res. 92, D2, 2112–2120 (1987).
[CrossRef]

E. V. Browell, S. Ismail, S. Shipley, “Ultraviolet DIAL Measurements of O3 Profiles in Regions of Spatially Inhomogeneous Aerosols,” Appl. Opt. 24, 2827–2836 (1985).
[CrossRef] [PubMed]

Byrne, D. M.

J. A. Reagan, J. D. Spinhirne, D. M. Byrne, D. W. Thomson, R. G. de Pena, Y. Mamane, “Atmospheric Particulate Properties Inferred from Lidar and Solar Radiometer Observations Compared with In-Situ Aircraft Measurements: A Case Study,” J. Appl. Meteorol. 16, 911–928 (1977).
[CrossRef]

Capitini, R.

D. Renaud, R. Capitini, “Boundary Layer Wafer Vapor Probing with a Solar Blind Raman Lidar: Validations, Meteorological Observations and Prospects,” J. Atmos. Oceanic Technol. 5, 585 (1988).
[CrossRef]

Carlson, T. N.

T. N. Carlson, R. S. Caverly, “Radiative Characteristics of Saharan Dust at Solar Wavelengths,” J. Geophys. Res. 82, 3141–3152 (1977).
[CrossRef]

J. M. Prospero, T. N. Carlson, “Vertical and Areal Distribution of Saharan Dust over the Western Equatorial North Atlantic Ocean,” J. Geophys. Res. 77, 5255–5265 (1972).
[CrossRef]

Carnuth, W.

R. Reiter, H. Jäger, W. Carnuth, W. Funk, “The El Chichon Cloud Over Central Europe Observed by lidar at Garnmisch-Partenkirchen During 1982,” Geophys. Res. Lett. 10, 1001–1004 (1983).
[CrossRef]

Caverly, R. S.

T. N. Carlson, R. S. Caverly, “Radiative Characteristics of Saharan Dust at Solar Wavelengths,” J. Geophys. Res. 82, 3141–3152 (1977).
[CrossRef]

Chameides, W. C.

W. C. Chameides, “The Photochemical Role of Tropospheric Nitrogen Oxides,” Geophys. Res. Lett. 5, 17–20 (1978).
[CrossRef]

Cohen, S.

A. Papayannis, M. Kompitsas, S. Cohen, “Dye Laser SO2 Absorption Cross-Section Measurements at 266 nm for DIAL Ozone Applications,” in Proceedings, New Laser Technologies and Applications, 1st GR-I International Conference, Olympia, Greece, A. Carabelas, T. Letardi Ed., (1988), p. 509.

Crutzen, P. J.

J. Fishman, S. Solomon, P. J. Crutzen, “Observational and Theoretical Evidence in Support of a Significant In-situ Photochemical Source of Tropospheric Ozone,” Tellus 31, 432–446 (1979).
[CrossRef]

Danielsen, E. F.

E. V. Browell, E. F. Danielsen, S. Ismail, G. L. Gregory, S. M. Beck, “Tropopause Fold Structure Determined from Airborne Lidar an In situ Measurements,” J. Geophys. Res. 92, D2, 2112–2120 (1987).
[CrossRef]

de Pena, R. G.

J. A. Reagan, J. D. Spinhirne, D. M. Byrne, D. W. Thomson, R. G. de Pena, Y. Mamane, “Atmospheric Particulate Properties Inferred from Lidar and Solar Radiometer Observations Compared with In-Situ Aircraft Measurements: A Case Study,” J. Appl. Meteorol. 16, 911–928 (1977).
[CrossRef]

Fenn, R. W.

E. P. Shettle, R. W. Fenn, “Models of the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on their Optical properties,” AFGL-TR-79-0214 (ADA 085951) (1979).

Fishman, J.

J. Fishman, S. Solomon, P. J. Crutzen, “Observational and Theoretical Evidence in Support of a Significant In-situ Photochemical Source of Tropospheric Ozone,” Tellus 31, 432–446 (1979).
[CrossRef]

J. Fishman, “Ozone in the Troposphere,” in Ozone in the Free Atmosphere166, R. Whitten, S. Prasad, Eds. (Van Nostrand Reinhold, New York1985).

Funk, W.

R. Reiter, H. Jäger, W. Carnuth, W. Funk, “The El Chichon Cloud Over Central Europe Observed by lidar at Garnmisch-Partenkirchen During 1982,” Geophys. Res. Lett. 10, 1001–1004 (1983).
[CrossRef]

Gregory, G. L.

E. V. Browell, E. F. Danielsen, S. Ismail, G. L. Gregory, S. M. Beck, “Tropopause Fold Structure Determined from Airborne Lidar an In situ Measurements,” J. Geophys. Res. 92, D2, 2112–2120 (1987).
[CrossRef]

Igarashi, T.

K. Asai, T. Itabe, T. Igarashi, “Range Resolved Measurements of Atmospheric Ozone Using a Differential-Absorption CO2 Laser Radar,” Appl. Phys. Lett. 35, 60–62 (1979).
[CrossRef]

Ismail, S.

E. V. Browell, E. F. Danielsen, S. Ismail, G. L. Gregory, S. M. Beck, “Tropopause Fold Structure Determined from Airborne Lidar an In situ Measurements,” J. Geophys. Res. 92, D2, 2112–2120 (1987).
[CrossRef]

E. V. Browell, S. Ismail, S. Shipley, “Ultraviolet DIAL Measurements of O3 Profiles in Regions of Spatially Inhomogeneous Aerosols,” Appl. Opt. 24, 2827–2836 (1985).
[CrossRef] [PubMed]

Itabe, T.

K. Asai, T. Itabe, T. Igarashi, “Range Resolved Measurements of Atmospheric Ozone Using a Differential-Absorption CO2 Laser Radar,” Appl. Phys. Lett. 35, 60–62 (1979).
[CrossRef]

Jäger, H.

R. Reiter, H. Jäger, W. Carnuth, W. Funk, “The El Chichon Cloud Over Central Europe Observed by lidar at Garnmisch-Partenkirchen During 1982,” Geophys. Res. Lett. 10, 1001–1004 (1983).
[CrossRef]

Klett, J. D.

Kneizys, F. X.

F. X. Kneizys et al., “Atmospheric Transmittance/radiance: Computer Code Lowtran 6,” AFGL-TR-80-0067, Feb.1980, Air Force Geophysics Laboratory, Bedford, Mass.

Komine, H.

H. Komine, “Stimulated Vibrational Raman Scattering in HD,” J. Quant. Electr. 22, 520 (1986).
[CrossRef]

Kompitsas, M.

A. Papayannis, M. Kompitsas, S. Cohen, “Dye Laser SO2 Absorption Cross-Section Measurements at 266 nm for DIAL Ozone Applications,” in Proceedings, New Laser Technologies and Applications, 1st GR-I International Conference, Olympia, Greece, A. Carabelas, T. Letardi Ed., (1988), p. 509.

Krueger, A. J.

A. J. Krueger, R. A. Minzer, “A Mid-latitude Ozone Model for the 1976 U.S. Standard Atmosphere,” J. Geophys. Res. 81, 4477–4481 (1976).
[CrossRef]

Lauffer, A. H.

A. M. Bass, A. E. Ledford, A. H. Lauffer, “Extinction Coefficients of NO2 and N2O4,” J. Res. Nat. Bur. Stand. A80, 143–166 (1976).
[CrossRef]

Ledford, A. E.

A. M. Bass, A. E. Ledford, A. H. Lauffer, “Extinction Coefficients of NO2 and N2O4,” J. Res. Nat. Bur. Stand. A80, 143–166 (1976).
[CrossRef]

Logan, J. A.

J. A. Logan, “Tropospheric Ozone: Seasonal Behavior, Trends, and Anthropogenic Influence,” J. Geophys. Res. 90, 10463–10482 (1985).
[CrossRef]

Maeda, M.

Mamane, Y.

J. A. Reagan, J. D. Spinhirne, D. M. Byrne, D. W. Thomson, R. G. de Pena, Y. Mamane, “Atmospheric Particulate Properties Inferred from Lidar and Solar Radiometer Observations Compared with In-Situ Aircraft Measurements: A Case Study,” J. Appl. Meteorol. 16, 911–928 (1977).
[CrossRef]

Martin, D. R.

D. R. Martin, “Kinetics of Sulfur Dioxide Fluorescence,” Report LBL-1199, Lawrence Berkeley Laboratory, Univ. of California, Berkeley, California (1973).

Mégie, G.

J. Pelon, G. Mégie, “Ozone Monitoring in the Troposphere and the Lower Stratosphere: Evaluation and Operation of a Ground Based Lidar Station,” J. Geophys. Res. 87, C7, 4947–4955 (1982).
[CrossRef]

Menzies, R. T.

Mgie, G.

Minzer, R. A.

A. J. Krueger, R. A. Minzer, “A Mid-latitude Ozone Model for the 1976 U.S. Standard Atmosphere,” J. Geophys. Res. 81, 4477–4481 (1976).
[CrossRef]

Miyazoe, Y.

Papayannis, A.

A. Papayannis, M. Kompitsas, S. Cohen, “Dye Laser SO2 Absorption Cross-Section Measurements at 266 nm for DIAL Ozone Applications,” in Proceedings, New Laser Technologies and Applications, 1st GR-I International Conference, Olympia, Greece, A. Carabelas, T. Letardi Ed., (1988), p. 509.

Paur, R. J.

A. M. Bass, R. J. Paur, “Ultraviolet Absorption Cross-Sections of Ozone: Measurements, Results and Error Analysis,” in Proceedings, Quadriennal Ozone Symposium, Halkidiki, Greece (Reidel, Hingham, Mass, 1984), p. 606.

Pelon, J.

J. Pelon, G. Mégie, “Ozone Monitoring in the Troposphere and the Lower Stratosphere: Evaluation and Operation of a Ground Based Lidar Station,” J. Geophys. Res. 87, C7, 4947–4955 (1982).
[CrossRef]

Post, M. J.

M. J. Post, “Atmospheric Purging of El Chichon Debris,” J. Geophys. Res. 91, 5222–5228 (1986).
[CrossRef]

Potter, J.

Prospero, J. M.

J. M. Prospero, T. N. Carlson, “Vertical and Areal Distribution of Saharan Dust over the Western Equatorial North Atlantic Ocean,” J. Geophys. Res. 77, 5255–5265 (1972).
[CrossRef]

Reagan, J. A.

J. A. Reagan, J. D. Spinhirne, D. M. Byrne, D. W. Thomson, R. G. de Pena, Y. Mamane, “Atmospheric Particulate Properties Inferred from Lidar and Solar Radiometer Observations Compared with In-Situ Aircraft Measurements: A Case Study,” J. Appl. Meteorol. 16, 911–928 (1977).
[CrossRef]

Reiter, R.

R. Reiter, H. Jäger, W. Carnuth, W. Funk, “The El Chichon Cloud Over Central Europe Observed by lidar at Garnmisch-Partenkirchen During 1982,” Geophys. Res. Lett. 10, 1001–1004 (1983).
[CrossRef]

Renaud, D.

D. Renaud, R. Capitini, “Boundary Layer Wafer Vapor Probing with a Solar Blind Raman Lidar: Validations, Meteorological Observations and Prospects,” J. Atmos. Oceanic Technol. 5, 585 (1988).
[CrossRef]

Schotland, R. M.

R. M. Schotland, “Error in the Lidar Measurement of Atmospheric Gases by Differential Absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
[CrossRef]

Shettle, E. P.

E. P. Shettle, R. W. Fenn, “Models of the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on their Optical properties,” AFGL-TR-79-0214 (ADA 085951) (1979).

Shipley, S.

Solomon, S.

J. Fishman, S. Solomon, P. J. Crutzen, “Observational and Theoretical Evidence in Support of a Significant In-situ Photochemical Source of Tropospheric Ozone,” Tellus 31, 432–446 (1979).
[CrossRef]

Spinhirne, J. D.

J. A. Reagan, J. D. Spinhirne, D. M. Byrne, D. W. Thomson, R. G. de Pena, Y. Mamane, “Atmospheric Particulate Properties Inferred from Lidar and Solar Radiometer Observations Compared with In-Situ Aircraft Measurements: A Case Study,” J. Appl. Meteorol. 16, 911–928 (1977).
[CrossRef]

Thomson, D. W.

J. A. Reagan, J. D. Spinhirne, D. M. Byrne, D. W. Thomson, R. G. de Pena, Y. Mamane, “Atmospheric Particulate Properties Inferred from Lidar and Solar Radiometer Observations Compared with In-Situ Aircraft Measurements: A Case Study,” J. Appl. Meteorol. 16, 911–928 (1977).
[CrossRef]

Tokunaga, M.

Uchino, O.

AFGL-TR-79-0214 (ADA 085951) (1)

E. P. Shettle, R. W. Fenn, “Models of the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on their Optical properties,” AFGL-TR-79-0214 (ADA 085951) (1979).

Appl. Opt. (5)

Appl. Phys. Lett. (1)

K. Asai, T. Itabe, T. Igarashi, “Range Resolved Measurements of Atmospheric Ozone Using a Differential-Absorption CO2 Laser Radar,” Appl. Phys. Lett. 35, 60–62 (1979).
[CrossRef]

Geophys. Res. Lett. (2)

W. C. Chameides, “The Photochemical Role of Tropospheric Nitrogen Oxides,” Geophys. Res. Lett. 5, 17–20 (1978).
[CrossRef]

R. Reiter, H. Jäger, W. Carnuth, W. Funk, “The El Chichon Cloud Over Central Europe Observed by lidar at Garnmisch-Partenkirchen During 1982,” Geophys. Res. Lett. 10, 1001–1004 (1983).
[CrossRef]

J. Appl. Meteorol. (2)

R. M. Schotland, “Error in the Lidar Measurement of Atmospheric Gases by Differential Absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
[CrossRef]

J. A. Reagan, J. D. Spinhirne, D. M. Byrne, D. W. Thomson, R. G. de Pena, Y. Mamane, “Atmospheric Particulate Properties Inferred from Lidar and Solar Radiometer Observations Compared with In-Situ Aircraft Measurements: A Case Study,” J. Appl. Meteorol. 16, 911–928 (1977).
[CrossRef]

J. Atmos. Oceanic Technol. (1)

D. Renaud, R. Capitini, “Boundary Layer Wafer Vapor Probing with a Solar Blind Raman Lidar: Validations, Meteorological Observations and Prospects,” J. Atmos. Oceanic Technol. 5, 585 (1988).
[CrossRef]

J. Geophys. Res. (7)

J. A. Logan, “Tropospheric Ozone: Seasonal Behavior, Trends, and Anthropogenic Influence,” J. Geophys. Res. 90, 10463–10482 (1985).
[CrossRef]

J. Pelon, G. Mégie, “Ozone Monitoring in the Troposphere and the Lower Stratosphere: Evaluation and Operation of a Ground Based Lidar Station,” J. Geophys. Res. 87, C7, 4947–4955 (1982).
[CrossRef]

E. V. Browell, E. F. Danielsen, S. Ismail, G. L. Gregory, S. M. Beck, “Tropopause Fold Structure Determined from Airborne Lidar an In situ Measurements,” J. Geophys. Res. 92, D2, 2112–2120 (1987).
[CrossRef]

M. J. Post, “Atmospheric Purging of El Chichon Debris,” J. Geophys. Res. 91, 5222–5228 (1986).
[CrossRef]

J. M. Prospero, T. N. Carlson, “Vertical and Areal Distribution of Saharan Dust over the Western Equatorial North Atlantic Ocean,” J. Geophys. Res. 77, 5255–5265 (1972).
[CrossRef]

T. N. Carlson, R. S. Caverly, “Radiative Characteristics of Saharan Dust at Solar Wavelengths,” J. Geophys. Res. 82, 3141–3152 (1977).
[CrossRef]

A. J. Krueger, R. A. Minzer, “A Mid-latitude Ozone Model for the 1976 U.S. Standard Atmosphere,” J. Geophys. Res. 81, 4477–4481 (1976).
[CrossRef]

J. Quant. Electr. (1)

H. Komine, “Stimulated Vibrational Raman Scattering in HD,” J. Quant. Electr. 22, 520 (1986).
[CrossRef]

J. Res. Nat. Bur. Stand. (1)

A. M. Bass, A. E. Ledford, A. H. Lauffer, “Extinction Coefficients of NO2 and N2O4,” J. Res. Nat. Bur. Stand. A80, 143–166 (1976).
[CrossRef]

Opt. Lett. (1)

Tellus (1)

J. Fishman, S. Solomon, P. J. Crutzen, “Observational and Theoretical Evidence in Support of a Significant In-situ Photochemical Source of Tropospheric Ozone,” Tellus 31, 432–446 (1979).
[CrossRef]

Other (6)

J. Fishman, “Ozone in the Troposphere,” in Ozone in the Free Atmosphere166, R. Whitten, S. Prasad, Eds. (Van Nostrand Reinhold, New York1985).

U.S. Standard Atmosphere (1976), NOAA, NASA, USAF, US Government Printing Office, Washington, D.C., p. 227.

F. X. Kneizys et al., “Atmospheric Transmittance/radiance: Computer Code Lowtran 6,” AFGL-TR-80-0067, Feb.1980, Air Force Geophysics Laboratory, Bedford, Mass.

A. M. Bass, R. J. Paur, “Ultraviolet Absorption Cross-Sections of Ozone: Measurements, Results and Error Analysis,” in Proceedings, Quadriennal Ozone Symposium, Halkidiki, Greece (Reidel, Hingham, Mass, 1984), p. 606.

D. R. Martin, “Kinetics of Sulfur Dioxide Fluorescence,” Report LBL-1199, Lawrence Berkeley Laboratory, Univ. of California, Berkeley, California (1973).

A. Papayannis, M. Kompitsas, S. Cohen, “Dye Laser SO2 Absorption Cross-Section Measurements at 266 nm for DIAL Ozone Applications,” in Proceedings, New Laser Technologies and Applications, 1st GR-I International Conference, Olympia, Greece, A. Carabelas, T. Letardi Ed., (1988), p. 509.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Daytime statistical error 1 vs altitude for various wavelength pairs (vertical resolution = 1 km) for a ground based lidar system.

Fig. 2
Fig. 2

Background sky light vs wavelength for the UV ozone DIAL system.

Fig. 3
Fig. 3

Nighttime statistical error 1 vs altitude for various wavelength pairs (vertical resolution = 1 km) for a ground based lidar system.

Fig. 4
Fig. 4

Vertical profile of the aerosol extinction coefficient at 300 nm used in the simulation algorithm.

Fig. 5
Fig. 5

Systematic error 2 vs altitude for three selected wavelength pairs.

Fig. 6
Fig. 6

Daytime statistical error 1 vs altitude (vertical resolution = 250 m) for an airborne nadir-looking lidar system (flight altitude = 5 km).

Fig. 7
Fig. 7

Algorithm for computing vertical ozone profiles (0–15 km) for a multiwavelength lidar system using the Klett method.

Fig. 8
Fig. 8

Comparison of the uncorrected 2 (solid line) and the corrected δ∊2 (dotted line) systematic error 2 for a ground based lidar system (wavelength pair = 266–289 nm). The value of C in the Klett inversion technique is overestimated.

Fig. 9
Fig. 9

Comparison of the uncorrected 2 (solid line) and the corrected δ∊2 (dotted line) systematic error 2 for a g round based lidar system (wavelength pair = 266–289 nm). The value of C in the Klett algorithm is underestimated.

Fig. 10
Fig. 10

Comparison of the uncorrected 2 (solid line) and the corrected δ∊2 (dotted line) systematic error, for a ground based Nd:YAG lidar system, using the Raman nitrogen return signal at 283.6 nm.

Fig. 11
Fig. 11

Comparison of the uncorrected 2 (solid line) and the corrected δ∊2 (dotted line) systematic error for an airborne Nd:YAG lidar system, by using the Raman nitrogen return signal at 283.6nm.

Fig. 12
Fig. 12

SNR vs altitude calculated for a KrF (6000shots) and a Nd:YAG (1000 shots) airborne lidar system flying at 3.0 km (a) and at 5.0 km (b).

Tables (3)

Tables Icon

Table I Available Wavelengths and Output Energy Using Fixed Frequency Lasers and Stimulated Raman Scattering

Tables Icon

Table II Ozone DIAL system receiver parameters

Tables Icon

Table III Absorption Cross Section (cm2 × 10−20) of O3, SO2, NO2 Species vs Wavelength (nm)

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

1 = 1 2 n Δ σ i Δ z ( N ) 1 / 2 2 SNR 1 2 + 2 SNR 2 2 ,
2 s = 1 2 n Δ σ i H p R 1 ( 1 - H p / H R ) ( 1 - ρ ) ,
2 e = - C Δ β P i n Δ σ i .
δ 2 s = 1 2 n Δ σ H p R 1 [ A - Δ H p H p ( 1 - ρ ) ] ,
A = ( 1 - H p / H R ) [ ( α m - 4 ρ 2 - 1 ) Δ β β + α m - 4 ( ln α ) ρ 2 ( 1 - 1 / R 1 ) Δ m ] , δ 2 e = β p n Δ σ C [ ( 1 - α m ) Δ β p β p - α m ( 1 n α ) Δ m ] ,
d S d r = 1 β d β d r - 2 β C ,
S ( r ) - S ( r m ) = S ( r ) - S ( r m ) - 16 π 3 r r m β R ( 1 - 3 8 π C ) d r - 2 r r m α 03 d r S ( r ) = ln [ r 2 P ( r ) ] ,
β ( r ) = exp [ S ( r ) - S ( r m ) ] { β m - 1 + 2 r r m exp [ S ( r ) - S ( r m ) ] C d r } .
S ( r ) - S ( r ) = K + ln [ β ( r ) / β R ( r ) ] - 0 r Δ [ 8 π 3 β R ( r ) + α o 3 ( r ) + β p / C ( r ) ] d r ,
d S ( r ) d r = 1 H R ( r ) - 2 α ¯ p ( r ) - 2 α ¯ o 3 ( r ) - 16 π 3 β ¯ R ( r ) ,

Metrics