Abstract

Measurements of water vapor absorption coefficients in the thermal IR atmospheric window (8–13 μm) during the past 20 years obtained by a variety of techniques are reviewed for consistency and are compared with computed values based on the AFGL spectral data tapes. The methods of data collection considered were atmospheric long path absorption with a CO2 laser or a broadband source and filters, a White cell and a CO2 laser or a broadband source and a spectrometer, and a spectrophone with a CO2 laser. Advantages and disadvantages of each measurement approach are given as a guide to further research. Continuum absorption has apparently been measured accurately to about the 5–10% level in five of the measurements reported. However, the effect of oxygen broadening has not been fully considered, since most laboratory measurements were made using nitrogen buffering. Oxygen could lead to a small reduction in the adopted value of the water vapor continuum absorption coefficient in air. Also, the temperature dependence does not seem to have been measured well for temperatures <20°C. The rotational and ν2 line absorption coefficients do not appear to have been determined well in this spectral region except at CO2 laser line frequencies, because the agreement between such measurements and the AFGL spectral data tapes is generally not good.

© 1990 Optical Society of America

Full Article  |  PDF Article

Corrections

William B. Grant, "Water vapor absorption coefficients in the 8–13 μm spectral region: a critical review: erratum," Appl. Opt. 29, 3206-3206 (1990)
https://www.osapublishing.org/ao/abstract.cfm?uri=ao-29-22-3206

References

  • View by:
  • |
  • |
  • |

  1. G. Finger, F. K. Kneubuhl, “Spectral Thermal Infrared Emission in the Terrestrial Atmosphere,” Infrared Millimeter Waves 12, 145–193 (1984).
  2. F. M. Luther, R. G. Ellingson, Y. Fouquart, S. Fels, N. A. Scott, W. J. Wiscombe, “Intercomparison of Radiation Codes in Climate Models (ICRCCM): Longwave Clear-Sky Results—a Workshop Summary,” Bull. Am. Meteorol. Soc. 69, 40–48 (1988).
  3. D. Chesters, W. D. Robinson, L. W. Uccellini, “Optimized Retrievals of Precipitable Water from the VAS ‘Split Window’,” J. Clim. Appl. Meteorol. 26, 1059–1066 (1987).
    [CrossRef]
  4. L. A. Bartolucci, M. Chang, P. E. Anuta, M. R. Graves, “Atmospheric Effects on Landsat TM Thermal IR Data,” IEEE Trans. Geoscience Remote Sensing GRS-26, 171–176 (1988).
    [CrossRef]
  5. A. E. Strong, “Greater Global Warming Revealed by Satellite-Derived Sea-Surface Temperature Trends,” Nature (London) 338, 642–645 (1989).
    [CrossRef]
  6. I. J. Barton, A. M. Zavody, D. M. O’Brien, D. R. Cutten, R. W. Saunders, D. T. Llewellyn-Jones, “Theoretical Algorithms for Satellite-Derived Sea Surface Temperatures,” J. Geophys. Res. 94, 3365–3375 (1989).
    [CrossRef]
  7. P. Schluessel, “Satellite-Derived Low-Level Atmospheric Water Vapor Content from Synergy of AVHRR with HIRS,” Int. J. Remote Sensing 10, 705–721 (1989).
    [CrossRef]
  8. A. B. Kahle, A. F. H. Goetz, “Mineralogic Information from a New Airborne Thermal Infrared Multispectral Sensor,” Science 222, 24–27 (1983).
    [CrossRef] [PubMed]
  9. C. Prabhakara, G. Dalu, “Passive Remote Sensing of the Water Vapor in the Troposphere and its Meteorological Significance,” in Atmospheric Water Vapor, A. Deepak, T. D. Wilkerson, L. H. Ruhnke, Eds. (Academic, New York, 1980), pp. 355–374.
  10. J. M. Russell et al., “Validation of Water Vapor Results Measured by the Limb Infrared Monitor of the Stratosphere Experiment on Nimbus 7,” J. Geophys. Res. 89, 5115–5124 (1984).
    [CrossRef]
  11. S. A. Clough, F. X. Kneizys, R. Davies, R. Gamache, R. Tipping, “Theoretical Line Shape for H2O Vapor; Application to the Continuum,” in Atmospheric Water Vapor, A. Deepak, T. D. Wilkerson, L. H. Ruhnke, Eds. (Academic, New York, 1980), pp. 25–46.
  12. D. E. Burch, “Continuum Absorption by Atmospheric H2O,” Proc. Soc. Photo-Instrum. Eng. 277, 28–39 (1981). D. E. Burch, “Continuum Absorption by Atmospheric H2O,” Report AFGL-TR-81-0300 by Ford Aeronutronic to AFGL, Hanscom AFB, Mass. (1981).
  13. S. H. Suck, A. E. Wetmore, T. S. Chen, J. L. Kassner, “Role of Various Water Clusters in IR Absorption in the 8–14-μm Window Region,” Appl. Opt. 21, 1610–1614 (1982).
    [CrossRef] [PubMed]
  14. A. A. Vigasin, G. V. Chlenova, “Water–Dimer Spectrum for Wavelengths >8 μm, and Extinction of Radiation in the Atmosphere,” Izv. Atmos. Oceanic Phys. 20, 596–599 (1984).
  15. G. L. Loper, M. A. O’Neill, J. A. Gelbwachs, “Water-Vapor Continuum CO2 Laser Absorption Spectra Between 27°C and −10°C,” Appl. Opt. 22, 3701–3710 (1983).
    [CrossRef] [PubMed]
  16. M. E. Thomas, R. J. Nordstrom, “Line Shape Model for Describing Infrared-Absorption by Water Vapor,” Appl. Opt. 24, 3526–3530 (1985).
    [CrossRef] [PubMed]
  17. S. A. Clough, F. X. Kneizys, L. S. Rothman, G. P. Anderson, E. P. Shettle, “Current Issues in Infrared Atmospheric Transparency,” presented at the International Meeting on Atmospheric Transparency for Satellite Applications, U. Naples, Capri, Italy (Sept. 1986).
  18. J. Hinderling, M. W. Sigrist, F. K. Kneubühl, “Laser-Photoacoustic Spectroscopy of Water-Vapor Continuum and Line Absorption in the 8 to 14-μm Atmospheric Window,” Infrared Phys. 27, No. 2, 63–120 (1987); private communication. Infrared Physics Laboratory ETH, Zurich, Switzerland.
    [CrossRef]
  19. M. E. Thomas, “Infrared- and Millimeter-Wavelength Absorption in the Atmospheric Windows by Water Vapor and Nitrogen: Measurement and Models,” Proc. Soc. Photo-Instrum. Eng. 926, 85–91 (1988).
  20. P. Varanasi, “Infrared Absorption by Water Vapor in the Atmospheric Window,” Proc. Soc. Photo-Instrum. Eng. 928, 213–230 (1988); “On the Nature of the Infrared Spectrum of Water Vapor Between 8 and 14 μm,” J. Quant. Spectrosc. Radiat. Transfer 40, 169–175 (1988).
  21. Z. Slanina, “A Theoretical Evaluation of Water Oligomer Population in the Earth’s Atmosphere,” J. Atmos. Chem. 6, 185–190 (1988).
    [CrossRef]
  22. D. E. Burch, R. L. Alt, “Continuum Absorption by H2O in the 700–1200 cm−1 and 2400–2800 cm−1 Windows,” Report AFGL-TR-84-0128 to the Air Force Geophysics Laboratory, Hanscom AFB MA (1984).
  23. R. J. Nordstrom, M. E. Thomas, J. C. Peterson, E. K. Damon, R. K. Long, “Effects of Oxygen Addition on Pressure-Broadened Water Vapor Absorption in the 10-μm Region,” Appl. Opt. 17, 2724–2729 (1978).
    [CrossRef] [PubMed]
  24. J. C. Peterson, M. E. Thomas, R. J. Nordstrom, E. K. Damon, R. K. Long, “Water Vapor–Nitrogen Absorption at CO2 Laser Frequencies,” Appl. Opt. 18, 834–841 (1979).
    [CrossRef] [PubMed]
  25. M. S. Shumate, R. T. Menzies, J. S. Margolis, L.-G. Rosengren, “Water Vapor Absorption of Carbon Dioxide Laser Radiation,” Appl. Opt. 15, 2480–2488 (1976).
    [CrossRef] [PubMed]
  26. J. S. Ryan, M. H. Hubert, R. A. Crane, “Water Vapor Absorption at Isotopic CO2 Laser Wavelengths,” Appl. Opt. 22, 711–717 (1983): Erratum, Appl. Opt. 23, 1302–1303 (1984).
    [CrossRef] [PubMed]
  27. F. X. Kneizys et al., “Comparison of 8 to 12 Micrometer and 3 to 5 Micrometer CVF Transmissometer Data with lowtran Calculations,” Air Force Geophysics Laboratory Report AFGL-TR-84-0171 (1984).
  28. D. R. Cutten, “Atmospheric IR Transmission Measurements in a Tropical Maritime Environment: Comparison with the lowtran 6 Model,” Tech. Memorandum ERL-0331-TM (Dept. of Defence, Defence Science and Technology Org., Electronics Research Lab., Salisbury, So. Australia, Feb.1985).
  29. D. R. Cutten, “Atmospheric Broadband Transmission Measurements and Predictions in the 8–13-μm Window: Influence of Water Continuum Absorption Errors,” Appl. Opt. 24, 1085–1087 (1985).
    [CrossRef] [PubMed]
  30. A. D. Devir, A. Ben-Shalom, S. G. Lipson, U. P. Oppenheim, “Long Path Atmospheric Transmittance Measurements: Technique, Instrumentation, and Results,” Proc. Soc. Photo-Opt. Instrum. Eng. 819, 72–79 (1987).
  31. A. D. Devir et al., “Experimental Validation of Atmospheric Transmittance Codes,” Proc. Soc. Photo-Opt. Instrum. Eng. 926, 54–65 (1988).
  32. D. A. Gryvnak, D. E. Burch, R. L. Alt, D. K. Zgonc, “Infrared Absorption by CH4, H2O, and CO2,” AFCRL-TR-76-0246, Final Report on contract F19628-76-C-0067 (1976).
  33. D. E. Burch, D. A. Gryvnak, “Infrared Absorption by CO2 and H2O,” Report AFCRL-TR-78-0154, to the Air Force Cambridge Research Laboratory, Hanscom AFB, MA (1978).
  34. D. E. Burch, “Continuum Absorption by H2O,” Report AFGL-TR-81-0030 to the Air Force Geophysics Laboratory, Hanscom AFB, MA (1982).
  35. L. S. Rothman et al., “The hitran Database: 1986 Edition,” Appl. Opt. 26, 4058–4097 (1987).
    [CrossRef] [PubMed]
  36. S. A. Clough, F. X. Kneizys, E. P. Shettle, G. P. Anderson, “Atmospheric Radiance and Transmittance: fascod2,” in Proceedings, Sixth Conference on Atmospheric Radiation, Williamsburg, Va (American Meteorological Society, 1986).
  37. S. A. Clough, AFGL; private communication (1987).
  38. P. Varanasi, S. Chudamani, “Self- and N2-Broadened Spectra of Water Vapor Between 7.5 and 14.5 μm,” J. Quant. Spectrosc. Radiat. Transfer 38, 407–412 (1987).
    [CrossRef]
  39. J. H. McCoy, B. D. Rensch, R. K. Long, “Water Vapor Continuum Absorption on Carbon Dioxide Laser Radiation near 10 μm,” Appl. Opt. 8, 1471–1478 (1969).
    [CrossRef] [PubMed]
  40. R. S. Eng, P. L. Kelley, A. R. Calawa, T. C. Harman, K. W. Nill, “Tunable Diode Laser Measurements of Water Vapor Absorption Line Parameters,” Mol. Phys. 28, 653–664 (1974).
    [CrossRef]
  41. V. Malathy Devi, D. C. Benner, C. P. Rinsland, M. A. H. Smith, B. D. Sidney, “Diode Laser Measurements of Air and Nitrogen Broadening in the ν2 Bands of HDO, H216O, and H218O,” J. Mol. Spectrosc. 117, 403–407 (1986).
    [CrossRef]
  42. L. C. Bradley, K. L. SooHoo, C. Freed, “Absolute Frequencies of Lasing Transitions in Nine CO2 Isotopic Species,” IEEE J. Quantum Electron. QE-22, 234–267 (1986).
    [CrossRef]
  43. H. G. Hughes, “Evaluation of the lowtran 6 Navy Maritime Aerosol Model Using 8 to 12 μm Sky Radiances,” Opt. Eng. 26, 1155–1160 (1987).
  44. C. F. Bohren, G. Koh, “Forward-Scattering Corrected Extinction by Nonspherical Particles,” Appl. Opt. 24, 1023–1029 (1985).
    [CrossRef] [PubMed]
  45. R. B. Smith, A. I. Carswell, “Differences Arising in the Determination of the Atmospheric Extinction Coefficient by Transmission and Target Reflectance Measurements,” Appl. Opt. 25, 398–402 (1986).
    [CrossRef] [PubMed]
  46. R. G. Isaacs, W.-C. Wang, R. D. Worsham, S. Goldenberg, “Multiple Scattering lowtran and fascode Models,” Appl. Opt. 26, 1272–1281 (1987).
    [CrossRef] [PubMed]
  47. L. B. Kreuzer, N. D. Kenyon, C. K. N. Patel, “Air Pollution: Sensitive Detection of 10 Pollutant Gases by Carbon Monoxide and Carbon Dioxide Lasers,” Science, 177, 347–349 (1972).
    [CrossRef] [PubMed]
  48. A. C. Tam, “Review of Laser Optoacoustic Spectroscopy, by V. P. Zharov and V. S. Letokov,” IEEE J. Quantum Electron. QE-23, 132 (1987).
    [CrossRef]
  49. W. B. Grant, J. S. Margolis, A. M. Brothers, D. M. Tratt, “CO2 DIAL Measurements of Water Vapor,” Appl. Opt. 26, 3033–3042 (1987).
    [CrossRef] [PubMed]
  50. C. P. Rinsland, NASA Langley Research Center; private communication (1989).
  51. R. J. Nordstrom, M. E. Thomas, J. F. Donavan, D. Gass, “Atmospheric Water Vapor Absorption at 12 CO2 Laser Frequencies,” Final Report 711934-1, Ohio State U., ElectroScience Laboratory for the Jet Propulsion Laboratory (1979).
  52. R. R. Gamache, R. W. Davies, “Theoretical Calculations of N2-Broadened Halfwidths of H2O Using Quantum Fourier Transform Theory,” Appl. Opt. 22, 4013–4019 (1983).
    [CrossRef] [PubMed]
  53. P. L. Meyer, M. W. Sigrist, F. K. Kneubuhl, J. Hinderling, “Comments on Absolute Absorption Coefficients of Atmospheric Water Vapor at CO2 Laser Wavelengths,” Infrared Phys. 27, 345–347 (1987).
    [CrossRef]
  54. Y. Zhao, R. M. Hardesty, “Technique for Correcting Effects of Long CO2 Laser Pulses in Aerosol-Backscattered Coherent Lidar Returns,” Appl. Opt. 27, 2719–2729 (1988).
    [CrossRef] [PubMed]
  55. G. L. Loper, R. C. Corbin, M. L. Takayama, R. A. Clifton, J. A. Gelbwachs, S. M. Beck, “Final Report on Progress During FYs 1984–1987 Toward Development of a Breadboard CO2 Laser Photoacoustic Toxic Vapor Monitor,” Aerospace Corp. Report for U.S. Env. Protect. Agency, R.T.P., NC, contract 68-03-3171 (1987).
  56. R. W. Saunders, D. P. Edwards, “Atmospheric Transmittances for the AVHRR Channels,” Appl. Opt. 28, 4154–4160 (1989).
    [CrossRef] [PubMed]

1989 (4)

A. E. Strong, “Greater Global Warming Revealed by Satellite-Derived Sea-Surface Temperature Trends,” Nature (London) 338, 642–645 (1989).
[CrossRef]

I. J. Barton, A. M. Zavody, D. M. O’Brien, D. R. Cutten, R. W. Saunders, D. T. Llewellyn-Jones, “Theoretical Algorithms for Satellite-Derived Sea Surface Temperatures,” J. Geophys. Res. 94, 3365–3375 (1989).
[CrossRef]

P. Schluessel, “Satellite-Derived Low-Level Atmospheric Water Vapor Content from Synergy of AVHRR with HIRS,” Int. J. Remote Sensing 10, 705–721 (1989).
[CrossRef]

R. W. Saunders, D. P. Edwards, “Atmospheric Transmittances for the AVHRR Channels,” Appl. Opt. 28, 4154–4160 (1989).
[CrossRef] [PubMed]

1988 (7)

Y. Zhao, R. M. Hardesty, “Technique for Correcting Effects of Long CO2 Laser Pulses in Aerosol-Backscattered Coherent Lidar Returns,” Appl. Opt. 27, 2719–2729 (1988).
[CrossRef] [PubMed]

F. M. Luther, R. G. Ellingson, Y. Fouquart, S. Fels, N. A. Scott, W. J. Wiscombe, “Intercomparison of Radiation Codes in Climate Models (ICRCCM): Longwave Clear-Sky Results—a Workshop Summary,” Bull. Am. Meteorol. Soc. 69, 40–48 (1988).

L. A. Bartolucci, M. Chang, P. E. Anuta, M. R. Graves, “Atmospheric Effects on Landsat TM Thermal IR Data,” IEEE Trans. Geoscience Remote Sensing GRS-26, 171–176 (1988).
[CrossRef]

M. E. Thomas, “Infrared- and Millimeter-Wavelength Absorption in the Atmospheric Windows by Water Vapor and Nitrogen: Measurement and Models,” Proc. Soc. Photo-Instrum. Eng. 926, 85–91 (1988).

P. Varanasi, “Infrared Absorption by Water Vapor in the Atmospheric Window,” Proc. Soc. Photo-Instrum. Eng. 928, 213–230 (1988); “On the Nature of the Infrared Spectrum of Water Vapor Between 8 and 14 μm,” J. Quant. Spectrosc. Radiat. Transfer 40, 169–175 (1988).

Z. Slanina, “A Theoretical Evaluation of Water Oligomer Population in the Earth’s Atmosphere,” J. Atmos. Chem. 6, 185–190 (1988).
[CrossRef]

A. D. Devir et al., “Experimental Validation of Atmospheric Transmittance Codes,” Proc. Soc. Photo-Opt. Instrum. Eng. 926, 54–65 (1988).

1987 (10)

A. D. Devir, A. Ben-Shalom, S. G. Lipson, U. P. Oppenheim, “Long Path Atmospheric Transmittance Measurements: Technique, Instrumentation, and Results,” Proc. Soc. Photo-Opt. Instrum. Eng. 819, 72–79 (1987).

R. G. Isaacs, W.-C. Wang, R. D. Worsham, S. Goldenberg, “Multiple Scattering lowtran and fascode Models,” Appl. Opt. 26, 1272–1281 (1987).
[CrossRef] [PubMed]

A. C. Tam, “Review of Laser Optoacoustic Spectroscopy, by V. P. Zharov and V. S. Letokov,” IEEE J. Quantum Electron. QE-23, 132 (1987).
[CrossRef]

P. Varanasi, S. Chudamani, “Self- and N2-Broadened Spectra of Water Vapor Between 7.5 and 14.5 μm,” J. Quant. Spectrosc. Radiat. Transfer 38, 407–412 (1987).
[CrossRef]

H. G. Hughes, “Evaluation of the lowtran 6 Navy Maritime Aerosol Model Using 8 to 12 μm Sky Radiances,” Opt. Eng. 26, 1155–1160 (1987).

J. Hinderling, M. W. Sigrist, F. K. Kneubühl, “Laser-Photoacoustic Spectroscopy of Water-Vapor Continuum and Line Absorption in the 8 to 14-μm Atmospheric Window,” Infrared Phys. 27, No. 2, 63–120 (1987); private communication. Infrared Physics Laboratory ETH, Zurich, Switzerland.
[CrossRef]

D. Chesters, W. D. Robinson, L. W. Uccellini, “Optimized Retrievals of Precipitable Water from the VAS ‘Split Window’,” J. Clim. Appl. Meteorol. 26, 1059–1066 (1987).
[CrossRef]

W. B. Grant, J. S. Margolis, A. M. Brothers, D. M. Tratt, “CO2 DIAL Measurements of Water Vapor,” Appl. Opt. 26, 3033–3042 (1987).
[CrossRef] [PubMed]

L. S. Rothman et al., “The hitran Database: 1986 Edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

P. L. Meyer, M. W. Sigrist, F. K. Kneubuhl, J. Hinderling, “Comments on Absolute Absorption Coefficients of Atmospheric Water Vapor at CO2 Laser Wavelengths,” Infrared Phys. 27, 345–347 (1987).
[CrossRef]

1986 (3)

V. Malathy Devi, D. C. Benner, C. P. Rinsland, M. A. H. Smith, B. D. Sidney, “Diode Laser Measurements of Air and Nitrogen Broadening in the ν2 Bands of HDO, H216O, and H218O,” J. Mol. Spectrosc. 117, 403–407 (1986).
[CrossRef]

L. C. Bradley, K. L. SooHoo, C. Freed, “Absolute Frequencies of Lasing Transitions in Nine CO2 Isotopic Species,” IEEE J. Quantum Electron. QE-22, 234–267 (1986).
[CrossRef]

R. B. Smith, A. I. Carswell, “Differences Arising in the Determination of the Atmospheric Extinction Coefficient by Transmission and Target Reflectance Measurements,” Appl. Opt. 25, 398–402 (1986).
[CrossRef] [PubMed]

1985 (3)

C. F. Bohren, G. Koh, “Forward-Scattering Corrected Extinction by Nonspherical Particles,” Appl. Opt. 24, 1023–1029 (1985).
[CrossRef] [PubMed]

M. E. Thomas, R. J. Nordstrom, “Line Shape Model for Describing Infrared-Absorption by Water Vapor,” Appl. Opt. 24, 3526–3530 (1985).
[CrossRef] [PubMed]

D. R. Cutten, “Atmospheric Broadband Transmission Measurements and Predictions in the 8–13-μm Window: Influence of Water Continuum Absorption Errors,” Appl. Opt. 24, 1085–1087 (1985).
[CrossRef] [PubMed]

1984 (3)

J. M. Russell et al., “Validation of Water Vapor Results Measured by the Limb Infrared Monitor of the Stratosphere Experiment on Nimbus 7,” J. Geophys. Res. 89, 5115–5124 (1984).
[CrossRef]

G. Finger, F. K. Kneubuhl, “Spectral Thermal Infrared Emission in the Terrestrial Atmosphere,” Infrared Millimeter Waves 12, 145–193 (1984).

A. A. Vigasin, G. V. Chlenova, “Water–Dimer Spectrum for Wavelengths >8 μm, and Extinction of Radiation in the Atmosphere,” Izv. Atmos. Oceanic Phys. 20, 596–599 (1984).

1983 (4)

R. R. Gamache, R. W. Davies, “Theoretical Calculations of N2-Broadened Halfwidths of H2O Using Quantum Fourier Transform Theory,” Appl. Opt. 22, 4013–4019 (1983).
[CrossRef] [PubMed]

J. S. Ryan, M. H. Hubert, R. A. Crane, “Water Vapor Absorption at Isotopic CO2 Laser Wavelengths,” Appl. Opt. 22, 711–717 (1983): Erratum, Appl. Opt. 23, 1302–1303 (1984).
[CrossRef] [PubMed]

A. B. Kahle, A. F. H. Goetz, “Mineralogic Information from a New Airborne Thermal Infrared Multispectral Sensor,” Science 222, 24–27 (1983).
[CrossRef] [PubMed]

G. L. Loper, M. A. O’Neill, J. A. Gelbwachs, “Water-Vapor Continuum CO2 Laser Absorption Spectra Between 27°C and −10°C,” Appl. Opt. 22, 3701–3710 (1983).
[CrossRef] [PubMed]

1982 (1)

1981 (1)

D. E. Burch, “Continuum Absorption by Atmospheric H2O,” Proc. Soc. Photo-Instrum. Eng. 277, 28–39 (1981). D. E. Burch, “Continuum Absorption by Atmospheric H2O,” Report AFGL-TR-81-0300 by Ford Aeronutronic to AFGL, Hanscom AFB, Mass. (1981).

1979 (1)

J. C. Peterson, M. E. Thomas, R. J. Nordstrom, E. K. Damon, R. K. Long, “Water Vapor–Nitrogen Absorption at CO2 Laser Frequencies,” Appl. Opt. 18, 834–841 (1979).
[CrossRef] [PubMed]

1978 (1)

1976 (1)

M. S. Shumate, R. T. Menzies, J. S. Margolis, L.-G. Rosengren, “Water Vapor Absorption of Carbon Dioxide Laser Radiation,” Appl. Opt. 15, 2480–2488 (1976).
[CrossRef] [PubMed]

1974 (1)

R. S. Eng, P. L. Kelley, A. R. Calawa, T. C. Harman, K. W. Nill, “Tunable Diode Laser Measurements of Water Vapor Absorption Line Parameters,” Mol. Phys. 28, 653–664 (1974).
[CrossRef]

1972 (1)

L. B. Kreuzer, N. D. Kenyon, C. K. N. Patel, “Air Pollution: Sensitive Detection of 10 Pollutant Gases by Carbon Monoxide and Carbon Dioxide Lasers,” Science, 177, 347–349 (1972).
[CrossRef] [PubMed]

1969 (1)

J. H. McCoy, B. D. Rensch, R. K. Long, “Water Vapor Continuum Absorption on Carbon Dioxide Laser Radiation near 10 μm,” Appl. Opt. 8, 1471–1478 (1969).
[CrossRef] [PubMed]

Alt, R. L.

D. E. Burch, R. L. Alt, “Continuum Absorption by H2O in the 700–1200 cm−1 and 2400–2800 cm−1 Windows,” Report AFGL-TR-84-0128 to the Air Force Geophysics Laboratory, Hanscom AFB MA (1984).

D. A. Gryvnak, D. E. Burch, R. L. Alt, D. K. Zgonc, “Infrared Absorption by CH4, H2O, and CO2,” AFCRL-TR-76-0246, Final Report on contract F19628-76-C-0067 (1976).

Anderson, G. P.

S. A. Clough, F. X. Kneizys, L. S. Rothman, G. P. Anderson, E. P. Shettle, “Current Issues in Infrared Atmospheric Transparency,” presented at the International Meeting on Atmospheric Transparency for Satellite Applications, U. Naples, Capri, Italy (Sept. 1986).

S. A. Clough, F. X. Kneizys, E. P. Shettle, G. P. Anderson, “Atmospheric Radiance and Transmittance: fascod2,” in Proceedings, Sixth Conference on Atmospheric Radiation, Williamsburg, Va (American Meteorological Society, 1986).

Anuta, P. E.

L. A. Bartolucci, M. Chang, P. E. Anuta, M. R. Graves, “Atmospheric Effects on Landsat TM Thermal IR Data,” IEEE Trans. Geoscience Remote Sensing GRS-26, 171–176 (1988).
[CrossRef]

Bartolucci, L. A.

L. A. Bartolucci, M. Chang, P. E. Anuta, M. R. Graves, “Atmospheric Effects on Landsat TM Thermal IR Data,” IEEE Trans. Geoscience Remote Sensing GRS-26, 171–176 (1988).
[CrossRef]

Barton, I. J.

I. J. Barton, A. M. Zavody, D. M. O’Brien, D. R. Cutten, R. W. Saunders, D. T. Llewellyn-Jones, “Theoretical Algorithms for Satellite-Derived Sea Surface Temperatures,” J. Geophys. Res. 94, 3365–3375 (1989).
[CrossRef]

Beck, S. M.

G. L. Loper, R. C. Corbin, M. L. Takayama, R. A. Clifton, J. A. Gelbwachs, S. M. Beck, “Final Report on Progress During FYs 1984–1987 Toward Development of a Breadboard CO2 Laser Photoacoustic Toxic Vapor Monitor,” Aerospace Corp. Report for U.S. Env. Protect. Agency, R.T.P., NC, contract 68-03-3171 (1987).

Benner, D. C.

V. Malathy Devi, D. C. Benner, C. P. Rinsland, M. A. H. Smith, B. D. Sidney, “Diode Laser Measurements of Air and Nitrogen Broadening in the ν2 Bands of HDO, H216O, and H218O,” J. Mol. Spectrosc. 117, 403–407 (1986).
[CrossRef]

Ben-Shalom, A.

A. D. Devir, A. Ben-Shalom, S. G. Lipson, U. P. Oppenheim, “Long Path Atmospheric Transmittance Measurements: Technique, Instrumentation, and Results,” Proc. Soc. Photo-Opt. Instrum. Eng. 819, 72–79 (1987).

Bohren, C. F.

C. F. Bohren, G. Koh, “Forward-Scattering Corrected Extinction by Nonspherical Particles,” Appl. Opt. 24, 1023–1029 (1985).
[CrossRef] [PubMed]

Bradley, L. C.

L. C. Bradley, K. L. SooHoo, C. Freed, “Absolute Frequencies of Lasing Transitions in Nine CO2 Isotopic Species,” IEEE J. Quantum Electron. QE-22, 234–267 (1986).
[CrossRef]

Brothers, A. M.

Burch, D. E.

D. E. Burch, “Continuum Absorption by Atmospheric H2O,” Proc. Soc. Photo-Instrum. Eng. 277, 28–39 (1981). D. E. Burch, “Continuum Absorption by Atmospheric H2O,” Report AFGL-TR-81-0300 by Ford Aeronutronic to AFGL, Hanscom AFB, Mass. (1981).

D. E. Burch, D. A. Gryvnak, “Infrared Absorption by CO2 and H2O,” Report AFCRL-TR-78-0154, to the Air Force Cambridge Research Laboratory, Hanscom AFB, MA (1978).

D. E. Burch, R. L. Alt, “Continuum Absorption by H2O in the 700–1200 cm−1 and 2400–2800 cm−1 Windows,” Report AFGL-TR-84-0128 to the Air Force Geophysics Laboratory, Hanscom AFB MA (1984).

D. A. Gryvnak, D. E. Burch, R. L. Alt, D. K. Zgonc, “Infrared Absorption by CH4, H2O, and CO2,” AFCRL-TR-76-0246, Final Report on contract F19628-76-C-0067 (1976).

D. E. Burch, “Continuum Absorption by H2O,” Report AFGL-TR-81-0030 to the Air Force Geophysics Laboratory, Hanscom AFB, MA (1982).

Calawa, A. R.

R. S. Eng, P. L. Kelley, A. R. Calawa, T. C. Harman, K. W. Nill, “Tunable Diode Laser Measurements of Water Vapor Absorption Line Parameters,” Mol. Phys. 28, 653–664 (1974).
[CrossRef]

Carswell, A. I.

R. B. Smith, A. I. Carswell, “Differences Arising in the Determination of the Atmospheric Extinction Coefficient by Transmission and Target Reflectance Measurements,” Appl. Opt. 25, 398–402 (1986).
[CrossRef] [PubMed]

Chang, M.

L. A. Bartolucci, M. Chang, P. E. Anuta, M. R. Graves, “Atmospheric Effects on Landsat TM Thermal IR Data,” IEEE Trans. Geoscience Remote Sensing GRS-26, 171–176 (1988).
[CrossRef]

Chen, T. S.

Chesters, D.

D. Chesters, W. D. Robinson, L. W. Uccellini, “Optimized Retrievals of Precipitable Water from the VAS ‘Split Window’,” J. Clim. Appl. Meteorol. 26, 1059–1066 (1987).
[CrossRef]

Chlenova, G. V.

A. A. Vigasin, G. V. Chlenova, “Water–Dimer Spectrum for Wavelengths >8 μm, and Extinction of Radiation in the Atmosphere,” Izv. Atmos. Oceanic Phys. 20, 596–599 (1984).

Chudamani, S.

P. Varanasi, S. Chudamani, “Self- and N2-Broadened Spectra of Water Vapor Between 7.5 and 14.5 μm,” J. Quant. Spectrosc. Radiat. Transfer 38, 407–412 (1987).
[CrossRef]

Clifton, R. A.

G. L. Loper, R. C. Corbin, M. L. Takayama, R. A. Clifton, J. A. Gelbwachs, S. M. Beck, “Final Report on Progress During FYs 1984–1987 Toward Development of a Breadboard CO2 Laser Photoacoustic Toxic Vapor Monitor,” Aerospace Corp. Report for U.S. Env. Protect. Agency, R.T.P., NC, contract 68-03-3171 (1987).

Clough, S. A.

S. A. Clough, F. X. Kneizys, E. P. Shettle, G. P. Anderson, “Atmospheric Radiance and Transmittance: fascod2,” in Proceedings, Sixth Conference on Atmospheric Radiation, Williamsburg, Va (American Meteorological Society, 1986).

S. A. Clough, F. X. Kneizys, L. S. Rothman, G. P. Anderson, E. P. Shettle, “Current Issues in Infrared Atmospheric Transparency,” presented at the International Meeting on Atmospheric Transparency for Satellite Applications, U. Naples, Capri, Italy (Sept. 1986).

S. A. Clough, F. X. Kneizys, R. Davies, R. Gamache, R. Tipping, “Theoretical Line Shape for H2O Vapor; Application to the Continuum,” in Atmospheric Water Vapor, A. Deepak, T. D. Wilkerson, L. H. Ruhnke, Eds. (Academic, New York, 1980), pp. 25–46.

S. A. Clough, AFGL; private communication (1987).

Corbin, R. C.

G. L. Loper, R. C. Corbin, M. L. Takayama, R. A. Clifton, J. A. Gelbwachs, S. M. Beck, “Final Report on Progress During FYs 1984–1987 Toward Development of a Breadboard CO2 Laser Photoacoustic Toxic Vapor Monitor,” Aerospace Corp. Report for U.S. Env. Protect. Agency, R.T.P., NC, contract 68-03-3171 (1987).

Crane, R. A.

J. S. Ryan, M. H. Hubert, R. A. Crane, “Water Vapor Absorption at Isotopic CO2 Laser Wavelengths,” Appl. Opt. 22, 711–717 (1983): Erratum, Appl. Opt. 23, 1302–1303 (1984).
[CrossRef] [PubMed]

Cutten, D. R.

I. J. Barton, A. M. Zavody, D. M. O’Brien, D. R. Cutten, R. W. Saunders, D. T. Llewellyn-Jones, “Theoretical Algorithms for Satellite-Derived Sea Surface Temperatures,” J. Geophys. Res. 94, 3365–3375 (1989).
[CrossRef]

D. R. Cutten, “Atmospheric Broadband Transmission Measurements and Predictions in the 8–13-μm Window: Influence of Water Continuum Absorption Errors,” Appl. Opt. 24, 1085–1087 (1985).
[CrossRef] [PubMed]

D. R. Cutten, “Atmospheric IR Transmission Measurements in a Tropical Maritime Environment: Comparison with the lowtran 6 Model,” Tech. Memorandum ERL-0331-TM (Dept. of Defence, Defence Science and Technology Org., Electronics Research Lab., Salisbury, So. Australia, Feb.1985).

Dalu, G.

C. Prabhakara, G. Dalu, “Passive Remote Sensing of the Water Vapor in the Troposphere and its Meteorological Significance,” in Atmospheric Water Vapor, A. Deepak, T. D. Wilkerson, L. H. Ruhnke, Eds. (Academic, New York, 1980), pp. 355–374.

Damon, E. K.

J. C. Peterson, M. E. Thomas, R. J. Nordstrom, E. K. Damon, R. K. Long, “Water Vapor–Nitrogen Absorption at CO2 Laser Frequencies,” Appl. Opt. 18, 834–841 (1979).
[CrossRef] [PubMed]

R. J. Nordstrom, M. E. Thomas, J. C. Peterson, E. K. Damon, R. K. Long, “Effects of Oxygen Addition on Pressure-Broadened Water Vapor Absorption in the 10-μm Region,” Appl. Opt. 17, 2724–2729 (1978).
[CrossRef] [PubMed]

Davies, R.

S. A. Clough, F. X. Kneizys, R. Davies, R. Gamache, R. Tipping, “Theoretical Line Shape for H2O Vapor; Application to the Continuum,” in Atmospheric Water Vapor, A. Deepak, T. D. Wilkerson, L. H. Ruhnke, Eds. (Academic, New York, 1980), pp. 25–46.

Davies, R. W.

R. R. Gamache, R. W. Davies, “Theoretical Calculations of N2-Broadened Halfwidths of H2O Using Quantum Fourier Transform Theory,” Appl. Opt. 22, 4013–4019 (1983).
[CrossRef] [PubMed]

Devir, A. D.

A. D. Devir et al., “Experimental Validation of Atmospheric Transmittance Codes,” Proc. Soc. Photo-Opt. Instrum. Eng. 926, 54–65 (1988).

A. D. Devir, A. Ben-Shalom, S. G. Lipson, U. P. Oppenheim, “Long Path Atmospheric Transmittance Measurements: Technique, Instrumentation, and Results,” Proc. Soc. Photo-Opt. Instrum. Eng. 819, 72–79 (1987).

Donavan, J. F.

R. J. Nordstrom, M. E. Thomas, J. F. Donavan, D. Gass, “Atmospheric Water Vapor Absorption at 12 CO2 Laser Frequencies,” Final Report 711934-1, Ohio State U., ElectroScience Laboratory for the Jet Propulsion Laboratory (1979).

Edwards, D. P.

Ellingson, R. G.

F. M. Luther, R. G. Ellingson, Y. Fouquart, S. Fels, N. A. Scott, W. J. Wiscombe, “Intercomparison of Radiation Codes in Climate Models (ICRCCM): Longwave Clear-Sky Results—a Workshop Summary,” Bull. Am. Meteorol. Soc. 69, 40–48 (1988).

Eng, R. S.

R. S. Eng, P. L. Kelley, A. R. Calawa, T. C. Harman, K. W. Nill, “Tunable Diode Laser Measurements of Water Vapor Absorption Line Parameters,” Mol. Phys. 28, 653–664 (1974).
[CrossRef]

Fels, S.

F. M. Luther, R. G. Ellingson, Y. Fouquart, S. Fels, N. A. Scott, W. J. Wiscombe, “Intercomparison of Radiation Codes in Climate Models (ICRCCM): Longwave Clear-Sky Results—a Workshop Summary,” Bull. Am. Meteorol. Soc. 69, 40–48 (1988).

Finger, G.

G. Finger, F. K. Kneubuhl, “Spectral Thermal Infrared Emission in the Terrestrial Atmosphere,” Infrared Millimeter Waves 12, 145–193 (1984).

Fouquart, Y.

F. M. Luther, R. G. Ellingson, Y. Fouquart, S. Fels, N. A. Scott, W. J. Wiscombe, “Intercomparison of Radiation Codes in Climate Models (ICRCCM): Longwave Clear-Sky Results—a Workshop Summary,” Bull. Am. Meteorol. Soc. 69, 40–48 (1988).

Freed, C.

L. C. Bradley, K. L. SooHoo, C. Freed, “Absolute Frequencies of Lasing Transitions in Nine CO2 Isotopic Species,” IEEE J. Quantum Electron. QE-22, 234–267 (1986).
[CrossRef]

Gamache, R.

S. A. Clough, F. X. Kneizys, R. Davies, R. Gamache, R. Tipping, “Theoretical Line Shape for H2O Vapor; Application to the Continuum,” in Atmospheric Water Vapor, A. Deepak, T. D. Wilkerson, L. H. Ruhnke, Eds. (Academic, New York, 1980), pp. 25–46.

Gamache, R. R.

R. R. Gamache, R. W. Davies, “Theoretical Calculations of N2-Broadened Halfwidths of H2O Using Quantum Fourier Transform Theory,” Appl. Opt. 22, 4013–4019 (1983).
[CrossRef] [PubMed]

Gass, D.

R. J. Nordstrom, M. E. Thomas, J. F. Donavan, D. Gass, “Atmospheric Water Vapor Absorption at 12 CO2 Laser Frequencies,” Final Report 711934-1, Ohio State U., ElectroScience Laboratory for the Jet Propulsion Laboratory (1979).

Gelbwachs, J. A.

G. L. Loper, M. A. O’Neill, J. A. Gelbwachs, “Water-Vapor Continuum CO2 Laser Absorption Spectra Between 27°C and −10°C,” Appl. Opt. 22, 3701–3710 (1983).
[CrossRef] [PubMed]

G. L. Loper, R. C. Corbin, M. L. Takayama, R. A. Clifton, J. A. Gelbwachs, S. M. Beck, “Final Report on Progress During FYs 1984–1987 Toward Development of a Breadboard CO2 Laser Photoacoustic Toxic Vapor Monitor,” Aerospace Corp. Report for U.S. Env. Protect. Agency, R.T.P., NC, contract 68-03-3171 (1987).

Goetz, A. F. H.

A. B. Kahle, A. F. H. Goetz, “Mineralogic Information from a New Airborne Thermal Infrared Multispectral Sensor,” Science 222, 24–27 (1983).
[CrossRef] [PubMed]

Goldenberg, S.

R. G. Isaacs, W.-C. Wang, R. D. Worsham, S. Goldenberg, “Multiple Scattering lowtran and fascode Models,” Appl. Opt. 26, 1272–1281 (1987).
[CrossRef] [PubMed]

Grant, W. B.

Graves, M. R.

L. A. Bartolucci, M. Chang, P. E. Anuta, M. R. Graves, “Atmospheric Effects on Landsat TM Thermal IR Data,” IEEE Trans. Geoscience Remote Sensing GRS-26, 171–176 (1988).
[CrossRef]

Gryvnak, D. A.

D. A. Gryvnak, D. E. Burch, R. L. Alt, D. K. Zgonc, “Infrared Absorption by CH4, H2O, and CO2,” AFCRL-TR-76-0246, Final Report on contract F19628-76-C-0067 (1976).

D. E. Burch, D. A. Gryvnak, “Infrared Absorption by CO2 and H2O,” Report AFCRL-TR-78-0154, to the Air Force Cambridge Research Laboratory, Hanscom AFB, MA (1978).

Hardesty, R. M.

Harman, T. C.

R. S. Eng, P. L. Kelley, A. R. Calawa, T. C. Harman, K. W. Nill, “Tunable Diode Laser Measurements of Water Vapor Absorption Line Parameters,” Mol. Phys. 28, 653–664 (1974).
[CrossRef]

Hinderling, J.

P. L. Meyer, M. W. Sigrist, F. K. Kneubuhl, J. Hinderling, “Comments on Absolute Absorption Coefficients of Atmospheric Water Vapor at CO2 Laser Wavelengths,” Infrared Phys. 27, 345–347 (1987).
[CrossRef]

J. Hinderling, M. W. Sigrist, F. K. Kneubühl, “Laser-Photoacoustic Spectroscopy of Water-Vapor Continuum and Line Absorption in the 8 to 14-μm Atmospheric Window,” Infrared Phys. 27, No. 2, 63–120 (1987); private communication. Infrared Physics Laboratory ETH, Zurich, Switzerland.
[CrossRef]

Hubert, M. H.

J. S. Ryan, M. H. Hubert, R. A. Crane, “Water Vapor Absorption at Isotopic CO2 Laser Wavelengths,” Appl. Opt. 22, 711–717 (1983): Erratum, Appl. Opt. 23, 1302–1303 (1984).
[CrossRef] [PubMed]

Hughes, H. G.

H. G. Hughes, “Evaluation of the lowtran 6 Navy Maritime Aerosol Model Using 8 to 12 μm Sky Radiances,” Opt. Eng. 26, 1155–1160 (1987).

Isaacs, R. G.

R. G. Isaacs, W.-C. Wang, R. D. Worsham, S. Goldenberg, “Multiple Scattering lowtran and fascode Models,” Appl. Opt. 26, 1272–1281 (1987).
[CrossRef] [PubMed]

Kahle, A. B.

A. B. Kahle, A. F. H. Goetz, “Mineralogic Information from a New Airborne Thermal Infrared Multispectral Sensor,” Science 222, 24–27 (1983).
[CrossRef] [PubMed]

Kassner, J. L.

Kelley, P. L.

R. S. Eng, P. L. Kelley, A. R. Calawa, T. C. Harman, K. W. Nill, “Tunable Diode Laser Measurements of Water Vapor Absorption Line Parameters,” Mol. Phys. 28, 653–664 (1974).
[CrossRef]

Kenyon, N. D.

L. B. Kreuzer, N. D. Kenyon, C. K. N. Patel, “Air Pollution: Sensitive Detection of 10 Pollutant Gases by Carbon Monoxide and Carbon Dioxide Lasers,” Science, 177, 347–349 (1972).
[CrossRef] [PubMed]

Kneizys, F. X.

S. A. Clough, F. X. Kneizys, R. Davies, R. Gamache, R. Tipping, “Theoretical Line Shape for H2O Vapor; Application to the Continuum,” in Atmospheric Water Vapor, A. Deepak, T. D. Wilkerson, L. H. Ruhnke, Eds. (Academic, New York, 1980), pp. 25–46.

S. A. Clough, F. X. Kneizys, L. S. Rothman, G. P. Anderson, E. P. Shettle, “Current Issues in Infrared Atmospheric Transparency,” presented at the International Meeting on Atmospheric Transparency for Satellite Applications, U. Naples, Capri, Italy (Sept. 1986).

S. A. Clough, F. X. Kneizys, E. P. Shettle, G. P. Anderson, “Atmospheric Radiance and Transmittance: fascod2,” in Proceedings, Sixth Conference on Atmospheric Radiation, Williamsburg, Va (American Meteorological Society, 1986).

F. X. Kneizys et al., “Comparison of 8 to 12 Micrometer and 3 to 5 Micrometer CVF Transmissometer Data with lowtran Calculations,” Air Force Geophysics Laboratory Report AFGL-TR-84-0171 (1984).

Kneubuhl, F. K.

P. L. Meyer, M. W. Sigrist, F. K. Kneubuhl, J. Hinderling, “Comments on Absolute Absorption Coefficients of Atmospheric Water Vapor at CO2 Laser Wavelengths,” Infrared Phys. 27, 345–347 (1987).
[CrossRef]

G. Finger, F. K. Kneubuhl, “Spectral Thermal Infrared Emission in the Terrestrial Atmosphere,” Infrared Millimeter Waves 12, 145–193 (1984).

Kneubühl, F. K.

J. Hinderling, M. W. Sigrist, F. K. Kneubühl, “Laser-Photoacoustic Spectroscopy of Water-Vapor Continuum and Line Absorption in the 8 to 14-μm Atmospheric Window,” Infrared Phys. 27, No. 2, 63–120 (1987); private communication. Infrared Physics Laboratory ETH, Zurich, Switzerland.
[CrossRef]

Koh, G.

C. F. Bohren, G. Koh, “Forward-Scattering Corrected Extinction by Nonspherical Particles,” Appl. Opt. 24, 1023–1029 (1985).
[CrossRef] [PubMed]

Kreuzer, L. B.

L. B. Kreuzer, N. D. Kenyon, C. K. N. Patel, “Air Pollution: Sensitive Detection of 10 Pollutant Gases by Carbon Monoxide and Carbon Dioxide Lasers,” Science, 177, 347–349 (1972).
[CrossRef] [PubMed]

Lipson, S. G.

A. D. Devir, A. Ben-Shalom, S. G. Lipson, U. P. Oppenheim, “Long Path Atmospheric Transmittance Measurements: Technique, Instrumentation, and Results,” Proc. Soc. Photo-Opt. Instrum. Eng. 819, 72–79 (1987).

Llewellyn-Jones, D. T.

I. J. Barton, A. M. Zavody, D. M. O’Brien, D. R. Cutten, R. W. Saunders, D. T. Llewellyn-Jones, “Theoretical Algorithms for Satellite-Derived Sea Surface Temperatures,” J. Geophys. Res. 94, 3365–3375 (1989).
[CrossRef]

Long, R. K.

J. C. Peterson, M. E. Thomas, R. J. Nordstrom, E. K. Damon, R. K. Long, “Water Vapor–Nitrogen Absorption at CO2 Laser Frequencies,” Appl. Opt. 18, 834–841 (1979).
[CrossRef] [PubMed]

R. J. Nordstrom, M. E. Thomas, J. C. Peterson, E. K. Damon, R. K. Long, “Effects of Oxygen Addition on Pressure-Broadened Water Vapor Absorption in the 10-μm Region,” Appl. Opt. 17, 2724–2729 (1978).
[CrossRef] [PubMed]

J. H. McCoy, B. D. Rensch, R. K. Long, “Water Vapor Continuum Absorption on Carbon Dioxide Laser Radiation near 10 μm,” Appl. Opt. 8, 1471–1478 (1969).
[CrossRef] [PubMed]

Loper, G. L.

G. L. Loper, M. A. O’Neill, J. A. Gelbwachs, “Water-Vapor Continuum CO2 Laser Absorption Spectra Between 27°C and −10°C,” Appl. Opt. 22, 3701–3710 (1983).
[CrossRef] [PubMed]

G. L. Loper, R. C. Corbin, M. L. Takayama, R. A. Clifton, J. A. Gelbwachs, S. M. Beck, “Final Report on Progress During FYs 1984–1987 Toward Development of a Breadboard CO2 Laser Photoacoustic Toxic Vapor Monitor,” Aerospace Corp. Report for U.S. Env. Protect. Agency, R.T.P., NC, contract 68-03-3171 (1987).

Luther, F. M.

F. M. Luther, R. G. Ellingson, Y. Fouquart, S. Fels, N. A. Scott, W. J. Wiscombe, “Intercomparison of Radiation Codes in Climate Models (ICRCCM): Longwave Clear-Sky Results—a Workshop Summary,” Bull. Am. Meteorol. Soc. 69, 40–48 (1988).

Malathy Devi, V.

V. Malathy Devi, D. C. Benner, C. P. Rinsland, M. A. H. Smith, B. D. Sidney, “Diode Laser Measurements of Air and Nitrogen Broadening in the ν2 Bands of HDO, H216O, and H218O,” J. Mol. Spectrosc. 117, 403–407 (1986).
[CrossRef]

Margolis, J. S.

W. B. Grant, J. S. Margolis, A. M. Brothers, D. M. Tratt, “CO2 DIAL Measurements of Water Vapor,” Appl. Opt. 26, 3033–3042 (1987).
[CrossRef] [PubMed]

M. S. Shumate, R. T. Menzies, J. S. Margolis, L.-G. Rosengren, “Water Vapor Absorption of Carbon Dioxide Laser Radiation,” Appl. Opt. 15, 2480–2488 (1976).
[CrossRef] [PubMed]

McCoy, J. H.

J. H. McCoy, B. D. Rensch, R. K. Long, “Water Vapor Continuum Absorption on Carbon Dioxide Laser Radiation near 10 μm,” Appl. Opt. 8, 1471–1478 (1969).
[CrossRef] [PubMed]

Menzies, R. T.

M. S. Shumate, R. T. Menzies, J. S. Margolis, L.-G. Rosengren, “Water Vapor Absorption of Carbon Dioxide Laser Radiation,” Appl. Opt. 15, 2480–2488 (1976).
[CrossRef] [PubMed]

Meyer, P. L.

P. L. Meyer, M. W. Sigrist, F. K. Kneubuhl, J. Hinderling, “Comments on Absolute Absorption Coefficients of Atmospheric Water Vapor at CO2 Laser Wavelengths,” Infrared Phys. 27, 345–347 (1987).
[CrossRef]

Nill, K. W.

R. S. Eng, P. L. Kelley, A. R. Calawa, T. C. Harman, K. W. Nill, “Tunable Diode Laser Measurements of Water Vapor Absorption Line Parameters,” Mol. Phys. 28, 653–664 (1974).
[CrossRef]

Nordstrom, R. J.

M. E. Thomas, R. J. Nordstrom, “Line Shape Model for Describing Infrared-Absorption by Water Vapor,” Appl. Opt. 24, 3526–3530 (1985).
[CrossRef] [PubMed]

J. C. Peterson, M. E. Thomas, R. J. Nordstrom, E. K. Damon, R. K. Long, “Water Vapor–Nitrogen Absorption at CO2 Laser Frequencies,” Appl. Opt. 18, 834–841 (1979).
[CrossRef] [PubMed]

R. J. Nordstrom, M. E. Thomas, J. C. Peterson, E. K. Damon, R. K. Long, “Effects of Oxygen Addition on Pressure-Broadened Water Vapor Absorption in the 10-μm Region,” Appl. Opt. 17, 2724–2729 (1978).
[CrossRef] [PubMed]

R. J. Nordstrom, M. E. Thomas, J. F. Donavan, D. Gass, “Atmospheric Water Vapor Absorption at 12 CO2 Laser Frequencies,” Final Report 711934-1, Ohio State U., ElectroScience Laboratory for the Jet Propulsion Laboratory (1979).

O’Brien, D. M.

I. J. Barton, A. M. Zavody, D. M. O’Brien, D. R. Cutten, R. W. Saunders, D. T. Llewellyn-Jones, “Theoretical Algorithms for Satellite-Derived Sea Surface Temperatures,” J. Geophys. Res. 94, 3365–3375 (1989).
[CrossRef]

O’Neill, M. A.

Oppenheim, U. P.

A. D. Devir, A. Ben-Shalom, S. G. Lipson, U. P. Oppenheim, “Long Path Atmospheric Transmittance Measurements: Technique, Instrumentation, and Results,” Proc. Soc. Photo-Opt. Instrum. Eng. 819, 72–79 (1987).

Patel, C. K. N.

L. B. Kreuzer, N. D. Kenyon, C. K. N. Patel, “Air Pollution: Sensitive Detection of 10 Pollutant Gases by Carbon Monoxide and Carbon Dioxide Lasers,” Science, 177, 347–349 (1972).
[CrossRef] [PubMed]

Peterson, J. C.

J. C. Peterson, M. E. Thomas, R. J. Nordstrom, E. K. Damon, R. K. Long, “Water Vapor–Nitrogen Absorption at CO2 Laser Frequencies,” Appl. Opt. 18, 834–841 (1979).
[CrossRef] [PubMed]

R. J. Nordstrom, M. E. Thomas, J. C. Peterson, E. K. Damon, R. K. Long, “Effects of Oxygen Addition on Pressure-Broadened Water Vapor Absorption in the 10-μm Region,” Appl. Opt. 17, 2724–2729 (1978).
[CrossRef] [PubMed]

Prabhakara, C.

C. Prabhakara, G. Dalu, “Passive Remote Sensing of the Water Vapor in the Troposphere and its Meteorological Significance,” in Atmospheric Water Vapor, A. Deepak, T. D. Wilkerson, L. H. Ruhnke, Eds. (Academic, New York, 1980), pp. 355–374.

Rensch, B. D.

J. H. McCoy, B. D. Rensch, R. K. Long, “Water Vapor Continuum Absorption on Carbon Dioxide Laser Radiation near 10 μm,” Appl. Opt. 8, 1471–1478 (1969).
[CrossRef] [PubMed]

Rinsland, C. P.

V. Malathy Devi, D. C. Benner, C. P. Rinsland, M. A. H. Smith, B. D. Sidney, “Diode Laser Measurements of Air and Nitrogen Broadening in the ν2 Bands of HDO, H216O, and H218O,” J. Mol. Spectrosc. 117, 403–407 (1986).
[CrossRef]

C. P. Rinsland, NASA Langley Research Center; private communication (1989).

Robinson, W. D.

D. Chesters, W. D. Robinson, L. W. Uccellini, “Optimized Retrievals of Precipitable Water from the VAS ‘Split Window’,” J. Clim. Appl. Meteorol. 26, 1059–1066 (1987).
[CrossRef]

Rosengren, L.-G.

M. S. Shumate, R. T. Menzies, J. S. Margolis, L.-G. Rosengren, “Water Vapor Absorption of Carbon Dioxide Laser Radiation,” Appl. Opt. 15, 2480–2488 (1976).
[CrossRef] [PubMed]

Rothman, L. S.

L. S. Rothman et al., “The hitran Database: 1986 Edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

S. A. Clough, F. X. Kneizys, L. S. Rothman, G. P. Anderson, E. P. Shettle, “Current Issues in Infrared Atmospheric Transparency,” presented at the International Meeting on Atmospheric Transparency for Satellite Applications, U. Naples, Capri, Italy (Sept. 1986).

Russell, J. M.

J. M. Russell et al., “Validation of Water Vapor Results Measured by the Limb Infrared Monitor of the Stratosphere Experiment on Nimbus 7,” J. Geophys. Res. 89, 5115–5124 (1984).
[CrossRef]

Ryan, J. S.

J. S. Ryan, M. H. Hubert, R. A. Crane, “Water Vapor Absorption at Isotopic CO2 Laser Wavelengths,” Appl. Opt. 22, 711–717 (1983): Erratum, Appl. Opt. 23, 1302–1303 (1984).
[CrossRef] [PubMed]

Saunders, R. W.

I. J. Barton, A. M. Zavody, D. M. O’Brien, D. R. Cutten, R. W. Saunders, D. T. Llewellyn-Jones, “Theoretical Algorithms for Satellite-Derived Sea Surface Temperatures,” J. Geophys. Res. 94, 3365–3375 (1989).
[CrossRef]

R. W. Saunders, D. P. Edwards, “Atmospheric Transmittances for the AVHRR Channels,” Appl. Opt. 28, 4154–4160 (1989).
[CrossRef] [PubMed]

Schluessel, P.

P. Schluessel, “Satellite-Derived Low-Level Atmospheric Water Vapor Content from Synergy of AVHRR with HIRS,” Int. J. Remote Sensing 10, 705–721 (1989).
[CrossRef]

Scott, N. A.

F. M. Luther, R. G. Ellingson, Y. Fouquart, S. Fels, N. A. Scott, W. J. Wiscombe, “Intercomparison of Radiation Codes in Climate Models (ICRCCM): Longwave Clear-Sky Results—a Workshop Summary,” Bull. Am. Meteorol. Soc. 69, 40–48 (1988).

Shettle, E. P.

S. A. Clough, F. X. Kneizys, E. P. Shettle, G. P. Anderson, “Atmospheric Radiance and Transmittance: fascod2,” in Proceedings, Sixth Conference on Atmospheric Radiation, Williamsburg, Va (American Meteorological Society, 1986).

S. A. Clough, F. X. Kneizys, L. S. Rothman, G. P. Anderson, E. P. Shettle, “Current Issues in Infrared Atmospheric Transparency,” presented at the International Meeting on Atmospheric Transparency for Satellite Applications, U. Naples, Capri, Italy (Sept. 1986).

Shumate, M. S.

M. S. Shumate, R. T. Menzies, J. S. Margolis, L.-G. Rosengren, “Water Vapor Absorption of Carbon Dioxide Laser Radiation,” Appl. Opt. 15, 2480–2488 (1976).
[CrossRef] [PubMed]

Sidney, B. D.

V. Malathy Devi, D. C. Benner, C. P. Rinsland, M. A. H. Smith, B. D. Sidney, “Diode Laser Measurements of Air and Nitrogen Broadening in the ν2 Bands of HDO, H216O, and H218O,” J. Mol. Spectrosc. 117, 403–407 (1986).
[CrossRef]

Sigrist, M. W.

J. Hinderling, M. W. Sigrist, F. K. Kneubühl, “Laser-Photoacoustic Spectroscopy of Water-Vapor Continuum and Line Absorption in the 8 to 14-μm Atmospheric Window,” Infrared Phys. 27, No. 2, 63–120 (1987); private communication. Infrared Physics Laboratory ETH, Zurich, Switzerland.
[CrossRef]

P. L. Meyer, M. W. Sigrist, F. K. Kneubuhl, J. Hinderling, “Comments on Absolute Absorption Coefficients of Atmospheric Water Vapor at CO2 Laser Wavelengths,” Infrared Phys. 27, 345–347 (1987).
[CrossRef]

Slanina, Z.

Z. Slanina, “A Theoretical Evaluation of Water Oligomer Population in the Earth’s Atmosphere,” J. Atmos. Chem. 6, 185–190 (1988).
[CrossRef]

Smith, M. A. H.

V. Malathy Devi, D. C. Benner, C. P. Rinsland, M. A. H. Smith, B. D. Sidney, “Diode Laser Measurements of Air and Nitrogen Broadening in the ν2 Bands of HDO, H216O, and H218O,” J. Mol. Spectrosc. 117, 403–407 (1986).
[CrossRef]

Smith, R. B.

R. B. Smith, A. I. Carswell, “Differences Arising in the Determination of the Atmospheric Extinction Coefficient by Transmission and Target Reflectance Measurements,” Appl. Opt. 25, 398–402 (1986).
[CrossRef] [PubMed]

SooHoo, K. L.

L. C. Bradley, K. L. SooHoo, C. Freed, “Absolute Frequencies of Lasing Transitions in Nine CO2 Isotopic Species,” IEEE J. Quantum Electron. QE-22, 234–267 (1986).
[CrossRef]

Strong, A. E.

A. E. Strong, “Greater Global Warming Revealed by Satellite-Derived Sea-Surface Temperature Trends,” Nature (London) 338, 642–645 (1989).
[CrossRef]

Suck, S. H.

Takayama, M. L.

G. L. Loper, R. C. Corbin, M. L. Takayama, R. A. Clifton, J. A. Gelbwachs, S. M. Beck, “Final Report on Progress During FYs 1984–1987 Toward Development of a Breadboard CO2 Laser Photoacoustic Toxic Vapor Monitor,” Aerospace Corp. Report for U.S. Env. Protect. Agency, R.T.P., NC, contract 68-03-3171 (1987).

Tam, A. C.

A. C. Tam, “Review of Laser Optoacoustic Spectroscopy, by V. P. Zharov and V. S. Letokov,” IEEE J. Quantum Electron. QE-23, 132 (1987).
[CrossRef]

Thomas, M. E.

M. E. Thomas, “Infrared- and Millimeter-Wavelength Absorption in the Atmospheric Windows by Water Vapor and Nitrogen: Measurement and Models,” Proc. Soc. Photo-Instrum. Eng. 926, 85–91 (1988).

M. E. Thomas, R. J. Nordstrom, “Line Shape Model for Describing Infrared-Absorption by Water Vapor,” Appl. Opt. 24, 3526–3530 (1985).
[CrossRef] [PubMed]

J. C. Peterson, M. E. Thomas, R. J. Nordstrom, E. K. Damon, R. K. Long, “Water Vapor–Nitrogen Absorption at CO2 Laser Frequencies,” Appl. Opt. 18, 834–841 (1979).
[CrossRef] [PubMed]

R. J. Nordstrom, M. E. Thomas, J. C. Peterson, E. K. Damon, R. K. Long, “Effects of Oxygen Addition on Pressure-Broadened Water Vapor Absorption in the 10-μm Region,” Appl. Opt. 17, 2724–2729 (1978).
[CrossRef] [PubMed]

R. J. Nordstrom, M. E. Thomas, J. F. Donavan, D. Gass, “Atmospheric Water Vapor Absorption at 12 CO2 Laser Frequencies,” Final Report 711934-1, Ohio State U., ElectroScience Laboratory for the Jet Propulsion Laboratory (1979).

Tipping, R.

S. A. Clough, F. X. Kneizys, R. Davies, R. Gamache, R. Tipping, “Theoretical Line Shape for H2O Vapor; Application to the Continuum,” in Atmospheric Water Vapor, A. Deepak, T. D. Wilkerson, L. H. Ruhnke, Eds. (Academic, New York, 1980), pp. 25–46.

Tratt, D. M.

Uccellini, L. W.

D. Chesters, W. D. Robinson, L. W. Uccellini, “Optimized Retrievals of Precipitable Water from the VAS ‘Split Window’,” J. Clim. Appl. Meteorol. 26, 1059–1066 (1987).
[CrossRef]

Varanasi, P.

P. Varanasi, “Infrared Absorption by Water Vapor in the Atmospheric Window,” Proc. Soc. Photo-Instrum. Eng. 928, 213–230 (1988); “On the Nature of the Infrared Spectrum of Water Vapor Between 8 and 14 μm,” J. Quant. Spectrosc. Radiat. Transfer 40, 169–175 (1988).

P. Varanasi, S. Chudamani, “Self- and N2-Broadened Spectra of Water Vapor Between 7.5 and 14.5 μm,” J. Quant. Spectrosc. Radiat. Transfer 38, 407–412 (1987).
[CrossRef]

Vigasin, A. A.

A. A. Vigasin, G. V. Chlenova, “Water–Dimer Spectrum for Wavelengths >8 μm, and Extinction of Radiation in the Atmosphere,” Izv. Atmos. Oceanic Phys. 20, 596–599 (1984).

Wang, W.-C.

R. G. Isaacs, W.-C. Wang, R. D. Worsham, S. Goldenberg, “Multiple Scattering lowtran and fascode Models,” Appl. Opt. 26, 1272–1281 (1987).
[CrossRef] [PubMed]

Wetmore, A. E.

Wiscombe, W. J.

F. M. Luther, R. G. Ellingson, Y. Fouquart, S. Fels, N. A. Scott, W. J. Wiscombe, “Intercomparison of Radiation Codes in Climate Models (ICRCCM): Longwave Clear-Sky Results—a Workshop Summary,” Bull. Am. Meteorol. Soc. 69, 40–48 (1988).

Worsham, R. D.

R. G. Isaacs, W.-C. Wang, R. D. Worsham, S. Goldenberg, “Multiple Scattering lowtran and fascode Models,” Appl. Opt. 26, 1272–1281 (1987).
[CrossRef] [PubMed]

Zavody, A. M.

I. J. Barton, A. M. Zavody, D. M. O’Brien, D. R. Cutten, R. W. Saunders, D. T. Llewellyn-Jones, “Theoretical Algorithms for Satellite-Derived Sea Surface Temperatures,” J. Geophys. Res. 94, 3365–3375 (1989).
[CrossRef]

Zgonc, D. K.

D. A. Gryvnak, D. E. Burch, R. L. Alt, D. K. Zgonc, “Infrared Absorption by CH4, H2O, and CO2,” AFCRL-TR-76-0246, Final Report on contract F19628-76-C-0067 (1976).

Zhao, Y.

Appl. Opt. (9)

M. E. Thomas, R. J. Nordstrom, “Line Shape Model for Describing Infrared-Absorption by Water Vapor,” Appl. Opt. 24, 3526–3530 (1985).
[CrossRef] [PubMed]

J. C. Peterson, M. E. Thomas, R. J. Nordstrom, E. K. Damon, R. K. Long, “Water Vapor–Nitrogen Absorption at CO2 Laser Frequencies,” Appl. Opt. 18, 834–841 (1979).
[CrossRef] [PubMed]

M. S. Shumate, R. T. Menzies, J. S. Margolis, L.-G. Rosengren, “Water Vapor Absorption of Carbon Dioxide Laser Radiation,” Appl. Opt. 15, 2480–2488 (1976).
[CrossRef] [PubMed]

J. S. Ryan, M. H. Hubert, R. A. Crane, “Water Vapor Absorption at Isotopic CO2 Laser Wavelengths,” Appl. Opt. 22, 711–717 (1983): Erratum, Appl. Opt. 23, 1302–1303 (1984).
[CrossRef] [PubMed]

J. H. McCoy, B. D. Rensch, R. K. Long, “Water Vapor Continuum Absorption on Carbon Dioxide Laser Radiation near 10 μm,” Appl. Opt. 8, 1471–1478 (1969).
[CrossRef] [PubMed]

C. F. Bohren, G. Koh, “Forward-Scattering Corrected Extinction by Nonspherical Particles,” Appl. Opt. 24, 1023–1029 (1985).
[CrossRef] [PubMed]

R. B. Smith, A. I. Carswell, “Differences Arising in the Determination of the Atmospheric Extinction Coefficient by Transmission and Target Reflectance Measurements,” Appl. Opt. 25, 398–402 (1986).
[CrossRef] [PubMed]

R. G. Isaacs, W.-C. Wang, R. D. Worsham, S. Goldenberg, “Multiple Scattering lowtran and fascode Models,” Appl. Opt. 26, 1272–1281 (1987).
[CrossRef] [PubMed]

R. R. Gamache, R. W. Davies, “Theoretical Calculations of N2-Broadened Halfwidths of H2O Using Quantum Fourier Transform Theory,” Appl. Opt. 22, 4013–4019 (1983).
[CrossRef] [PubMed]

Appl. Opt. (8)

Bull. Am. Meteorol. Soc. (1)

F. M. Luther, R. G. Ellingson, Y. Fouquart, S. Fels, N. A. Scott, W. J. Wiscombe, “Intercomparison of Radiation Codes in Climate Models (ICRCCM): Longwave Clear-Sky Results—a Workshop Summary,” Bull. Am. Meteorol. Soc. 69, 40–48 (1988).

IEEE J. Quantum Electron. (2)

L. C. Bradley, K. L. SooHoo, C. Freed, “Absolute Frequencies of Lasing Transitions in Nine CO2 Isotopic Species,” IEEE J. Quantum Electron. QE-22, 234–267 (1986).
[CrossRef]

A. C. Tam, “Review of Laser Optoacoustic Spectroscopy, by V. P. Zharov and V. S. Letokov,” IEEE J. Quantum Electron. QE-23, 132 (1987).
[CrossRef]

IEEE Trans. Geoscience Remote Sensing (1)

L. A. Bartolucci, M. Chang, P. E. Anuta, M. R. Graves, “Atmospheric Effects on Landsat TM Thermal IR Data,” IEEE Trans. Geoscience Remote Sensing GRS-26, 171–176 (1988).
[CrossRef]

Infrared Millimeter Waves (1)

G. Finger, F. K. Kneubuhl, “Spectral Thermal Infrared Emission in the Terrestrial Atmosphere,” Infrared Millimeter Waves 12, 145–193 (1984).

Infrared Phys. (2)

J. Hinderling, M. W. Sigrist, F. K. Kneubühl, “Laser-Photoacoustic Spectroscopy of Water-Vapor Continuum and Line Absorption in the 8 to 14-μm Atmospheric Window,” Infrared Phys. 27, No. 2, 63–120 (1987); private communication. Infrared Physics Laboratory ETH, Zurich, Switzerland.
[CrossRef]

P. L. Meyer, M. W. Sigrist, F. K. Kneubuhl, J. Hinderling, “Comments on Absolute Absorption Coefficients of Atmospheric Water Vapor at CO2 Laser Wavelengths,” Infrared Phys. 27, 345–347 (1987).
[CrossRef]

Int. J. Remote Sensing (1)

P. Schluessel, “Satellite-Derived Low-Level Atmospheric Water Vapor Content from Synergy of AVHRR with HIRS,” Int. J. Remote Sensing 10, 705–721 (1989).
[CrossRef]

Izv. Atmos. Oceanic Phys. (1)

A. A. Vigasin, G. V. Chlenova, “Water–Dimer Spectrum for Wavelengths >8 μm, and Extinction of Radiation in the Atmosphere,” Izv. Atmos. Oceanic Phys. 20, 596–599 (1984).

J. Atmos. Chem. (1)

Z. Slanina, “A Theoretical Evaluation of Water Oligomer Population in the Earth’s Atmosphere,” J. Atmos. Chem. 6, 185–190 (1988).
[CrossRef]

J. Clim. Appl. Meteorol. (1)

D. Chesters, W. D. Robinson, L. W. Uccellini, “Optimized Retrievals of Precipitable Water from the VAS ‘Split Window’,” J. Clim. Appl. Meteorol. 26, 1059–1066 (1987).
[CrossRef]

J. Geophys. Res. (2)

I. J. Barton, A. M. Zavody, D. M. O’Brien, D. R. Cutten, R. W. Saunders, D. T. Llewellyn-Jones, “Theoretical Algorithms for Satellite-Derived Sea Surface Temperatures,” J. Geophys. Res. 94, 3365–3375 (1989).
[CrossRef]

J. M. Russell et al., “Validation of Water Vapor Results Measured by the Limb Infrared Monitor of the Stratosphere Experiment on Nimbus 7,” J. Geophys. Res. 89, 5115–5124 (1984).
[CrossRef]

J. Mol. Spectrosc. (1)

V. Malathy Devi, D. C. Benner, C. P. Rinsland, M. A. H. Smith, B. D. Sidney, “Diode Laser Measurements of Air and Nitrogen Broadening in the ν2 Bands of HDO, H216O, and H218O,” J. Mol. Spectrosc. 117, 403–407 (1986).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

P. Varanasi, S. Chudamani, “Self- and N2-Broadened Spectra of Water Vapor Between 7.5 and 14.5 μm,” J. Quant. Spectrosc. Radiat. Transfer 38, 407–412 (1987).
[CrossRef]

Mol. Phys. (1)

R. S. Eng, P. L. Kelley, A. R. Calawa, T. C. Harman, K. W. Nill, “Tunable Diode Laser Measurements of Water Vapor Absorption Line Parameters,” Mol. Phys. 28, 653–664 (1974).
[CrossRef]

Nature (London) (1)

A. E. Strong, “Greater Global Warming Revealed by Satellite-Derived Sea-Surface Temperature Trends,” Nature (London) 338, 642–645 (1989).
[CrossRef]

Opt. Eng. (1)

H. G. Hughes, “Evaluation of the lowtran 6 Navy Maritime Aerosol Model Using 8 to 12 μm Sky Radiances,” Opt. Eng. 26, 1155–1160 (1987).

Proc. Soc. Photo-Instrum. Eng. (3)

D. E. Burch, “Continuum Absorption by Atmospheric H2O,” Proc. Soc. Photo-Instrum. Eng. 277, 28–39 (1981). D. E. Burch, “Continuum Absorption by Atmospheric H2O,” Report AFGL-TR-81-0300 by Ford Aeronutronic to AFGL, Hanscom AFB, Mass. (1981).

M. E. Thomas, “Infrared- and Millimeter-Wavelength Absorption in the Atmospheric Windows by Water Vapor and Nitrogen: Measurement and Models,” Proc. Soc. Photo-Instrum. Eng. 926, 85–91 (1988).

P. Varanasi, “Infrared Absorption by Water Vapor in the Atmospheric Window,” Proc. Soc. Photo-Instrum. Eng. 928, 213–230 (1988); “On the Nature of the Infrared Spectrum of Water Vapor Between 8 and 14 μm,” J. Quant. Spectrosc. Radiat. Transfer 40, 169–175 (1988).

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

A. D. Devir et al., “Experimental Validation of Atmospheric Transmittance Codes,” Proc. Soc. Photo-Opt. Instrum. Eng. 926, 54–65 (1988).

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

A. D. Devir, A. Ben-Shalom, S. G. Lipson, U. P. Oppenheim, “Long Path Atmospheric Transmittance Measurements: Technique, Instrumentation, and Results,” Proc. Soc. Photo-Opt. Instrum. Eng. 819, 72–79 (1987).

Science (2)

A. B. Kahle, A. F. H. Goetz, “Mineralogic Information from a New Airborne Thermal Infrared Multispectral Sensor,” Science 222, 24–27 (1983).
[CrossRef] [PubMed]

L. B. Kreuzer, N. D. Kenyon, C. K. N. Patel, “Air Pollution: Sensitive Detection of 10 Pollutant Gases by Carbon Monoxide and Carbon Dioxide Lasers,” Science, 177, 347–349 (1972).
[CrossRef] [PubMed]

Other (14)

G. L. Loper, R. C. Corbin, M. L. Takayama, R. A. Clifton, J. A. Gelbwachs, S. M. Beck, “Final Report on Progress During FYs 1984–1987 Toward Development of a Breadboard CO2 Laser Photoacoustic Toxic Vapor Monitor,” Aerospace Corp. Report for U.S. Env. Protect. Agency, R.T.P., NC, contract 68-03-3171 (1987).

C. P. Rinsland, NASA Langley Research Center; private communication (1989).

R. J. Nordstrom, M. E. Thomas, J. F. Donavan, D. Gass, “Atmospheric Water Vapor Absorption at 12 CO2 Laser Frequencies,” Final Report 711934-1, Ohio State U., ElectroScience Laboratory for the Jet Propulsion Laboratory (1979).

C. Prabhakara, G. Dalu, “Passive Remote Sensing of the Water Vapor in the Troposphere and its Meteorological Significance,” in Atmospheric Water Vapor, A. Deepak, T. D. Wilkerson, L. H. Ruhnke, Eds. (Academic, New York, 1980), pp. 355–374.

D. E. Burch, R. L. Alt, “Continuum Absorption by H2O in the 700–1200 cm−1 and 2400–2800 cm−1 Windows,” Report AFGL-TR-84-0128 to the Air Force Geophysics Laboratory, Hanscom AFB MA (1984).

S. A. Clough, F. X. Kneizys, R. Davies, R. Gamache, R. Tipping, “Theoretical Line Shape for H2O Vapor; Application to the Continuum,” in Atmospheric Water Vapor, A. Deepak, T. D. Wilkerson, L. H. Ruhnke, Eds. (Academic, New York, 1980), pp. 25–46.

S. A. Clough, F. X. Kneizys, L. S. Rothman, G. P. Anderson, E. P. Shettle, “Current Issues in Infrared Atmospheric Transparency,” presented at the International Meeting on Atmospheric Transparency for Satellite Applications, U. Naples, Capri, Italy (Sept. 1986).

D. A. Gryvnak, D. E. Burch, R. L. Alt, D. K. Zgonc, “Infrared Absorption by CH4, H2O, and CO2,” AFCRL-TR-76-0246, Final Report on contract F19628-76-C-0067 (1976).

D. E. Burch, D. A. Gryvnak, “Infrared Absorption by CO2 and H2O,” Report AFCRL-TR-78-0154, to the Air Force Cambridge Research Laboratory, Hanscom AFB, MA (1978).

D. E. Burch, “Continuum Absorption by H2O,” Report AFGL-TR-81-0030 to the Air Force Geophysics Laboratory, Hanscom AFB, MA (1982).

S. A. Clough, F. X. Kneizys, E. P. Shettle, G. P. Anderson, “Atmospheric Radiance and Transmittance: fascod2,” in Proceedings, Sixth Conference on Atmospheric Radiation, Williamsburg, Va (American Meteorological Society, 1986).

S. A. Clough, AFGL; private communication (1987).

F. X. Kneizys et al., “Comparison of 8 to 12 Micrometer and 3 to 5 Micrometer CVF Transmissometer Data with lowtran Calculations,” Air Force Geophysics Laboratory Report AFGL-TR-84-0171 (1984).

D. R. Cutten, “Atmospheric IR Transmission Measurements in a Tropical Maritime Environment: Comparison with the lowtran 6 Model,” Tech. Memorandum ERL-0331-TM (Dept. of Defence, Defence Science and Technology Org., Electronics Research Lab., Salisbury, So. Australia, Feb.1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental data for the water vapor continuum self-broadening coefficient from Burch and Alt,22 measured using a spectrometer with 0.3-cm−1 resolution, and a White cell.

Fig. 2
Fig. 2

Values of water vapor continuum absorption coefficient at 14.3 Torr of water vapor in nitrogen for a total pressure of 760 Torr at 296 K converted to values at 10 Torr using Table I of Burch and Alt. Also shown are the AFGL values on hitran (Rothman et al.35), courtesy of Clough.37 Note that 1 Torr = 1.058 g/m3.

Fig. 3
Fig. 3

Experimental values for water vapor continuum from Peterson et al.24 for 10 Torr of water vapor in nitrogen at a total pressure of 760 Torr at 297.5 K. A CO2 laser was used to make the measurements. The dots indicate values for spectrophone measurements, while ×s indicate values measured in a White cell. Those values which could be affected by nearby water vapor lines or ammonia are in parentheses. The values were calculated from the data in their Table I with reference to the data in their Figs. 35. The line represents the values of continuum absorption in hitran, adjusted to 297.5 K.

Fig. 4
Fig. 4

Experimental values for water vapor continuum absorption measured by Hinderling et al.,18 using a spectrophone for 10 Torr of water vapor in nitrogen for a total pressure of 760 Torr at 296 K. The values in the 1030–1090-cm−1 spectral region may have been affected by trace contaminants in the cell.

Fig. 5
Fig. 5

Experimental values for water vapor continuum absorption measured by Shumate et al.,25 using a spectrophone at 10 Torr in synthetic air at a total pressure of 760 Torr and 300 K. The values reported have been increased by 21% to account for the difference in the ethylene absorption coefficient used by them (29.1 atm−1 cm−1) and the current best value (35.0 ± 2.2 atm−1 cm−1). The dots represent normal data; the ×s represent data which they corrected for the presence of ammonia in the spectrophone.

Fig. 6
Fig. 6

Experimental values for water vapor continuum absorption measured by Loper et al.15 using a spectrophone at 10 Torr in synthetic air at a total pressure of 760 Torr and 300 K.

Fig. 7
Fig. 7

Experimental values for water vapor continuum absorption measured by Ryan et al.26 using a spectrophone at 10 Torr in synthetic air at a total pressure of 760 Torr and 296 K. ×s represent data obtained using a 12C16O2 laser at 8.4 and 10 Torr. Δs represent data obtained using a 13C16O2 laser at 8.4 and 10.7 Torr, and ○s represent data obtained using a 14C16O2 laser at 8.6 and 11 Torr both adjusted to 10 Torr assuming a pressure-squared dependence for the absorption.

Fig. 8
Fig. 8

Ratio of N2-buffered water vapor line absorption coefficient to synthetic air-buffered water vapor line absorption coefficient (continuum value removed) vs normalized frequency difference between the CO2 laser line frequency and the water vapor line frequency on the AFGL spectral data tapes (frequency separation divided by the Lorentzian halfwidth) for lines where the CO2 laser determined line strengths agree with the AFGL values. The line represents the expected ratio vs frequency for an expected linewidth ratio (γN2/γair) of 0.9.

Fig. 9
Fig. 9

Same as Fig. 8 but for values where the CO2 laser determined values do not agree within experimental error with the AFGL values.

Tables (6)

Tables Icon

Table I Summary of Water Vapor Continuum Absorption Measurement Parameters

Tables Icon

Table II 12C16O2 Laser Lines Thought not to be Affected Significantly by Water Vapor Line or Ammonia Absorptiona

Tables Icon

Table III Spectrophone Measurement Parameters

Tables Icon

Table IV CO2 Laser Measurements of Strong Water Vapor Line Absorption Coefficients at 300 K, 10-Torr Partial Pressure, in Synthetic Air, and αC2H4 = 34.76 atm−1 cm−1, for Selected CO2 Laser Lines

Tables Icon

Table V Comparison of Spectrophone Measurements of Strong Water Vapor Line Absorption Coefficients Using CO2 Lasers with the Values Using hitran for 10-Torr Partial Pressure, 300 K, αC2H4 = 35.0 atm−1 cm−1

Tables Icon

Table VI Comparison of Problems and Advantages for Three Approaches for Measuring Water Vapor Continuum Absorption Coefficients

Metrics