Abstract

A fiber optic gyroscope different from the standard concept is presented. A fused fiber 3 × 3 directional coupler provides a constant phase shift thus enabling the detection of rotation rate at the quadrature point without phase modulation. Bias errors due to birefringent coupling centers in the fiber coil are avoided by using an unpolarized light source. A contrast insensitive signal recovery scheme eliminates the influence of polarization fluctuations on the scale factor. First measurements with a prototype gyroscope (90 mm in diameter and 23 mm in height) show a bias stability of <4.7°/h and scale factor accuracy of <0.1% in the range of ±200°/s.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Ezekiel, H. J. Arditty, Fiber-Optic Rotation Sensors (Springer-Verlag, Berlin, 1982).
  2. G. Schiffner, W. R. Leeb, H. Krammer, J. Wittmann, “Reciprocity of Birefringent Single-Mode Fibers for Optical Gyros,” Appl. Opt. 18, 2096–2097 (1979).
    [CrossRef] [PubMed]
  3. S. K. Sheem, “Fiber Optic Gyroscope with (3 × 3)-Directional Coupler,” Appl. Phys. Lett. 37, 869–871 (1980).
    [CrossRef]
  4. K. Petermann, P. Russer, “Ringinterferometer,” West German PatentDE 3,006,580A1 (1980).
  5. G. A. Pavlath, H. J. Shaw, “Birefringence and Polarization Effects in Fiber Gyroscopes,” Appl. Opt. 21, 1752–1757 (1982).
    [CrossRef] [PubMed]
  6. W. K. Burns, R. P. Moeller, C. A. Villarruel, “Observation of Low Noise in a Passive Fibre Gyroscope,” Electron. Lett. 18, 648–650 (1982).
    [CrossRef]
  7. S. K. Sheem, “Optical Fiber Interferometer with (3 × 3) Directional Couplers: Analysis,” J. Appl. Phys. 52, 3865–3872(1981).
    [CrossRef]
  8. M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1975), pp. 544–553.
  9. G. Trommer, “Wavelength Dependence of 3 × 3 Fiber Coupler for Gyro Application,” Electron. Lett. 25, 944–945 (1989).
    [CrossRef]
  10. M. A. Davis, A. D. Kersey, M. J. Marrone, A. Dandridge, “Characterization of 3 × 3 Fiber Couplers for Passive Homodyne Systems: Polarization and Temperature Sensitivity,” Optical Fiber Communication Conference, 1989 Technical Digest Series, Vol. 5 (Optical Society of America, Washington, DC, 1988), p. 103.
  11. W. K. Burns, C. Chen, R. Moeller, “Fiber-Optic Gyroscopes with Broad-Band Sources,” IEEE/OSA J. Lightwave Technol. LT-1, 98–105 (1983).
    [CrossRef]
  12. K. Bohm, P. Marten, K. Petermann, R. Ulrich, “Low Drift Fibre Gyroscope Using a Superluminescent Diode,” Electron. Lett. 17, 352–353 (1981).
    [CrossRef]

1989

G. Trommer, “Wavelength Dependence of 3 × 3 Fiber Coupler for Gyro Application,” Electron. Lett. 25, 944–945 (1989).
[CrossRef]

1983

W. K. Burns, C. Chen, R. Moeller, “Fiber-Optic Gyroscopes with Broad-Band Sources,” IEEE/OSA J. Lightwave Technol. LT-1, 98–105 (1983).
[CrossRef]

1982

G. A. Pavlath, H. J. Shaw, “Birefringence and Polarization Effects in Fiber Gyroscopes,” Appl. Opt. 21, 1752–1757 (1982).
[CrossRef] [PubMed]

W. K. Burns, R. P. Moeller, C. A. Villarruel, “Observation of Low Noise in a Passive Fibre Gyroscope,” Electron. Lett. 18, 648–650 (1982).
[CrossRef]

1981

S. K. Sheem, “Optical Fiber Interferometer with (3 × 3) Directional Couplers: Analysis,” J. Appl. Phys. 52, 3865–3872(1981).
[CrossRef]

K. Bohm, P. Marten, K. Petermann, R. Ulrich, “Low Drift Fibre Gyroscope Using a Superluminescent Diode,” Electron. Lett. 17, 352–353 (1981).
[CrossRef]

1980

S. K. Sheem, “Fiber Optic Gyroscope with (3 × 3)-Directional Coupler,” Appl. Phys. Lett. 37, 869–871 (1980).
[CrossRef]

1979

Arditty, H. J.

S. Ezekiel, H. J. Arditty, Fiber-Optic Rotation Sensors (Springer-Verlag, Berlin, 1982).

Bohm, K.

K. Bohm, P. Marten, K. Petermann, R. Ulrich, “Low Drift Fibre Gyroscope Using a Superluminescent Diode,” Electron. Lett. 17, 352–353 (1981).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1975), pp. 544–553.

Burns, W. K.

W. K. Burns, C. Chen, R. Moeller, “Fiber-Optic Gyroscopes with Broad-Band Sources,” IEEE/OSA J. Lightwave Technol. LT-1, 98–105 (1983).
[CrossRef]

W. K. Burns, R. P. Moeller, C. A. Villarruel, “Observation of Low Noise in a Passive Fibre Gyroscope,” Electron. Lett. 18, 648–650 (1982).
[CrossRef]

Chen, C.

W. K. Burns, C. Chen, R. Moeller, “Fiber-Optic Gyroscopes with Broad-Band Sources,” IEEE/OSA J. Lightwave Technol. LT-1, 98–105 (1983).
[CrossRef]

Dandridge, A.

M. A. Davis, A. D. Kersey, M. J. Marrone, A. Dandridge, “Characterization of 3 × 3 Fiber Couplers for Passive Homodyne Systems: Polarization and Temperature Sensitivity,” Optical Fiber Communication Conference, 1989 Technical Digest Series, Vol. 5 (Optical Society of America, Washington, DC, 1988), p. 103.

Davis, M. A.

M. A. Davis, A. D. Kersey, M. J. Marrone, A. Dandridge, “Characterization of 3 × 3 Fiber Couplers for Passive Homodyne Systems: Polarization and Temperature Sensitivity,” Optical Fiber Communication Conference, 1989 Technical Digest Series, Vol. 5 (Optical Society of America, Washington, DC, 1988), p. 103.

Ezekiel, S.

S. Ezekiel, H. J. Arditty, Fiber-Optic Rotation Sensors (Springer-Verlag, Berlin, 1982).

Kersey, A. D.

M. A. Davis, A. D. Kersey, M. J. Marrone, A. Dandridge, “Characterization of 3 × 3 Fiber Couplers for Passive Homodyne Systems: Polarization and Temperature Sensitivity,” Optical Fiber Communication Conference, 1989 Technical Digest Series, Vol. 5 (Optical Society of America, Washington, DC, 1988), p. 103.

Krammer, H.

Leeb, W. R.

Marrone, M. J.

M. A. Davis, A. D. Kersey, M. J. Marrone, A. Dandridge, “Characterization of 3 × 3 Fiber Couplers for Passive Homodyne Systems: Polarization and Temperature Sensitivity,” Optical Fiber Communication Conference, 1989 Technical Digest Series, Vol. 5 (Optical Society of America, Washington, DC, 1988), p. 103.

Marten, P.

K. Bohm, P. Marten, K. Petermann, R. Ulrich, “Low Drift Fibre Gyroscope Using a Superluminescent Diode,” Electron. Lett. 17, 352–353 (1981).
[CrossRef]

Moeller, R.

W. K. Burns, C. Chen, R. Moeller, “Fiber-Optic Gyroscopes with Broad-Band Sources,” IEEE/OSA J. Lightwave Technol. LT-1, 98–105 (1983).
[CrossRef]

Moeller, R. P.

W. K. Burns, R. P. Moeller, C. A. Villarruel, “Observation of Low Noise in a Passive Fibre Gyroscope,” Electron. Lett. 18, 648–650 (1982).
[CrossRef]

Pavlath, G. A.

Petermann, K.

K. Bohm, P. Marten, K. Petermann, R. Ulrich, “Low Drift Fibre Gyroscope Using a Superluminescent Diode,” Electron. Lett. 17, 352–353 (1981).
[CrossRef]

K. Petermann, P. Russer, “Ringinterferometer,” West German PatentDE 3,006,580A1 (1980).

Russer, P.

K. Petermann, P. Russer, “Ringinterferometer,” West German PatentDE 3,006,580A1 (1980).

Schiffner, G.

Shaw, H. J.

Sheem, S. K.

S. K. Sheem, “Optical Fiber Interferometer with (3 × 3) Directional Couplers: Analysis,” J. Appl. Phys. 52, 3865–3872(1981).
[CrossRef]

S. K. Sheem, “Fiber Optic Gyroscope with (3 × 3)-Directional Coupler,” Appl. Phys. Lett. 37, 869–871 (1980).
[CrossRef]

Trommer, G.

G. Trommer, “Wavelength Dependence of 3 × 3 Fiber Coupler for Gyro Application,” Electron. Lett. 25, 944–945 (1989).
[CrossRef]

Ulrich, R.

K. Bohm, P. Marten, K. Petermann, R. Ulrich, “Low Drift Fibre Gyroscope Using a Superluminescent Diode,” Electron. Lett. 17, 352–353 (1981).
[CrossRef]

Villarruel, C. A.

W. K. Burns, R. P. Moeller, C. A. Villarruel, “Observation of Low Noise in a Passive Fibre Gyroscope,” Electron. Lett. 18, 648–650 (1982).
[CrossRef]

Wittmann, J.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1975), pp. 544–553.

Appl. Opt.

Appl. Phys. Lett.

S. K. Sheem, “Fiber Optic Gyroscope with (3 × 3)-Directional Coupler,” Appl. Phys. Lett. 37, 869–871 (1980).
[CrossRef]

Electron. Lett.

G. Trommer, “Wavelength Dependence of 3 × 3 Fiber Coupler for Gyro Application,” Electron. Lett. 25, 944–945 (1989).
[CrossRef]

W. K. Burns, R. P. Moeller, C. A. Villarruel, “Observation of Low Noise in a Passive Fibre Gyroscope,” Electron. Lett. 18, 648–650 (1982).
[CrossRef]

K. Bohm, P. Marten, K. Petermann, R. Ulrich, “Low Drift Fibre Gyroscope Using a Superluminescent Diode,” Electron. Lett. 17, 352–353 (1981).
[CrossRef]

IEEE/OSA J. Lightwave Technol.

W. K. Burns, C. Chen, R. Moeller, “Fiber-Optic Gyroscopes with Broad-Band Sources,” IEEE/OSA J. Lightwave Technol. LT-1, 98–105 (1983).
[CrossRef]

J. Appl. Phys.

S. K. Sheem, “Optical Fiber Interferometer with (3 × 3) Directional Couplers: Analysis,” J. Appl. Phys. 52, 3865–3872(1981).
[CrossRef]

Other

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1975), pp. 544–553.

M. A. Davis, A. D. Kersey, M. J. Marrone, A. Dandridge, “Characterization of 3 × 3 Fiber Couplers for Passive Homodyne Systems: Polarization and Temperature Sensitivity,” Optical Fiber Communication Conference, 1989 Technical Digest Series, Vol. 5 (Optical Society of America, Washington, DC, 1988), p. 103.

K. Petermann, P. Russer, “Ringinterferometer,” West German PatentDE 3,006,580A1 (1980).

S. Ezekiel, H. J. Arditty, Fiber-Optic Rotation Sensors (Springer-Verlag, Berlin, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Principal configuration of a passive FOG.

Fig. 2
Fig. 2

Output signals P2 and P3 for ideal fiber coil.

Fig. 3
Fig. 3

Output signals P2 and P3 for fiber coil with coupling centers.

Fig. 4
Fig. 4

Measured output signals (P2P3) and (P2 + P3) as functions of rotation rate.

Fig. 5
Fig. 5

Bias stability during 10-min measurement time.

Fig. 6
Fig. 6

Scale factor linearity.

Equations (35)

Equations on this page are rendered with MathJax. Learn more.

J ( λ ) = [ E x ( λ ) E x * ( λ ) E x ( λ ) E y * ( λ ) E y ( λ ) E x * ( λ ) E y ( λ ) E y * ( λ ) ] ,
J i j = J j i * ,
P = Λ 1 - Λ 2 Λ 1 + Λ 2 ,
I ( λ ) = T r { J ( λ ) } .
J ( λ ) = [ ( 1 + P ) / 2 0 0 ( 1 - P ) / 2 ] I 0 ( λ ) ,
J out = G · J in · G + ,
I i ( λ ) = T r { G i ( λ ) · J L ( λ ) · G i + ( λ ) } ,
G 2 = A 23 · S CW · A 21 + A 22 · S CCW · A 31 ,
G 3 = A 33 · S CW · A 21 + A 32 · S CCW · A 31 ,
G 1 = A 11 .
A i j = a i j [ 1 0 0 1 ] = r i j exp ( j Φ i j ) [ 1 0 0 1 ] .
S CW = exp ( + j Φ s / 2 ) S 0 CW ,
S CCW = exp ( - j Φ s / 2 ) S 0 CCW ,
Φ s = 8 π A N λ c Ω .
S 0 CCW = S 0 CW T ,
S 0 CW = [ cos δ - sin δ sin δ cos δ ] [ - 1 0 0 1 ] [ a b * - b a * ] [ cos δ sin δ - sin δ cos δ ] .
S 0 CW = [ - 1 - α exp ( - j ξ ) - α exp ( - j η ) - α exp ( + j η ) + 1 - α exp ( + j ξ ) ] .
P 1 = v 1 D 1 I 0 ,
P 2 = v 2 [ A 2 + k B 2 cos ( Φ s - C 2 + Φ F ) ] d s I 0 ,
P 3 = v 3 [ A 3 + k B 3 cos ( Φ s + C 3 + Φ F ) ] d s I 0 ,
A i = r 21 2 r i 3 2 + r 31 2 r 2 i 2 ,
B i = 2 r 21 r i 3 r 31 r 2 i ,
C i = Φ 21 + Φ i 3 - Φ 31 - Φ 2 i ,
D 1 = r 11 2 .
k = [ 1 - α + α cos ( 2 η ) ] 2 + P 2 [ α sin ( 2 η ) ] 2 ,
Φ F = arctan [ P α sin ( 2 η ) 1 - α + α cos ( 2 η ) ] .
Φ F ( P = 0 ) = 0
( P 2 - P 3 ) + f 1 P 1 ( P 2 + P 3 ) - f 2 P 1 = f 3 sin ( f 6 Ω + f 4 ) cos ( f 6 Ω + f 5 ) ,
f 1 = v 3 A 3 - v 2 A 2 v 1 D 1 d s 0 ,
f 2 = v 3 A 3 + v 2 A 2 v 1 D 1 d s ,
f 3 = [ v 2 B 2 cos ( C 2 ) - v 3 B 3 cos ( C 3 ) ] 2 + [ v 2 B 2 sin ( C 2 ) + v 3 B 3 sin ( C 3 ) ] 2 [ v 2 B 2 cos ( C 2 ) + v 3 B 3 cos ( C 3 ) ] 2 + [ v 2 B 2 sin ( C 2 ) - v 3 B 3 sin ( C 3 ) ] 2 ,
f 4 = arctan [ v 2 B 2 cos ( C 2 ) - v 3 B 3 cos ( C 3 ) v 2 B 2 sin ( C 2 ) + v 3 B 3 sin ( C 3 ) ] 0 ,
f 5 = arctan [ - v 2 B 2 sin ( C 2 ) - v 3 B 3 sin ( C 3 ) v 2 B 2 cos ( C 2 ) + v 3 B 3 cos ( C 3 ) ] 0 ,
f 6 = 8 π A N λ c .
( P 2 - P 3 ) ( P 2 + P 3 ) - 2 ( A / D ) d s P 1 cot ( C ) = tan ( f 6 Ω ) .

Metrics