Abstract

The requirements for true time steering of phased array antennas are reviewed, and the resulting delay line hardware requirements are discussed. Two hardware-compressive fiber optic delay line architectures are then briefly described and quantitatively compared. The basics of phased array antenna partition are then presented. Based on these principles a delay-compressive and element-compressive 2-D fiber optic delay line architecture is described, and its basic characteristics and capabilities are discussed.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Soref, “Programmable Time-Delay Devices,” Appl. Opt. 23, 3736–3737 (1984).
    [CrossRef] [PubMed]
  2. A. M. Levine, “Fiber-Optic Phased Array Antenna System for RF Transmission,” U.S. Patent.4028702 (1977).
  3. H. F. Taylor, “Optical Fiber Devices for Signal Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 209, 159–165 (1979).
  4. B. Lagerstroem, P. Svensson, A. Djupsjoebacka, L. Thylen, “Integrated Optical Delay Line Signal Processor,” in Technical Digest, Conference on Optical Fiber Communication/Sixth International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, DC, 1987), paper WK2.
  5. A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Prototype Binary Fiber Optic Delay Line,” Opt. Eng. 28, 1193–1202 (1989).

1989

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Prototype Binary Fiber Optic Delay Line,” Opt. Eng. 28, 1193–1202 (1989).

1984

1979

H. F. Taylor, “Optical Fiber Devices for Signal Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 209, 159–165 (1979).

Davies, D. K.

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Prototype Binary Fiber Optic Delay Line,” Opt. Eng. 28, 1193–1202 (1989).

Djupsjoebacka, A.

B. Lagerstroem, P. Svensson, A. Djupsjoebacka, L. Thylen, “Integrated Optical Delay Line Signal Processor,” in Technical Digest, Conference on Optical Fiber Communication/Sixth International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, DC, 1987), paper WK2.

Goutzoulis, A. P.

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Prototype Binary Fiber Optic Delay Line,” Opt. Eng. 28, 1193–1202 (1989).

Lagerstroem, B.

B. Lagerstroem, P. Svensson, A. Djupsjoebacka, L. Thylen, “Integrated Optical Delay Line Signal Processor,” in Technical Digest, Conference on Optical Fiber Communication/Sixth International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, DC, 1987), paper WK2.

Levine, A. M.

A. M. Levine, “Fiber-Optic Phased Array Antenna System for RF Transmission,” U.S. Patent.4028702 (1977).

Soref, R. A.

Svensson, P.

B. Lagerstroem, P. Svensson, A. Djupsjoebacka, L. Thylen, “Integrated Optical Delay Line Signal Processor,” in Technical Digest, Conference on Optical Fiber Communication/Sixth International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, DC, 1987), paper WK2.

Taylor, H. F.

H. F. Taylor, “Optical Fiber Devices for Signal Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 209, 159–165 (1979).

Thylen, L.

B. Lagerstroem, P. Svensson, A. Djupsjoebacka, L. Thylen, “Integrated Optical Delay Line Signal Processor,” in Technical Digest, Conference on Optical Fiber Communication/Sixth International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, DC, 1987), paper WK2.

Zomp, J. M.

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Prototype Binary Fiber Optic Delay Line,” Opt. Eng. 28, 1193–1202 (1989).

Appl. Opt.

Opt. Eng.

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Prototype Binary Fiber Optic Delay Line,” Opt. Eng. 28, 1193–1202 (1989).

Proc. Soc. Photo-Opt. Instrum. Eng.

H. F. Taylor, “Optical Fiber Devices for Signal Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 209, 159–165 (1979).

Other

B. Lagerstroem, P. Svensson, A. Djupsjoebacka, L. Thylen, “Integrated Optical Delay Line Signal Processor,” in Technical Digest, Conference on Optical Fiber Communication/Sixth International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, DC, 1987), paper WK2.

A. M. Levine, “Fiber-Optic Phased Array Antenna System for RF Transmission,” U.S. Patent.4028702 (1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Linear phased array geometry.

Fig. 2
Fig. 2

Square root fiber optic delay line (SRODEL).

Fig. 3
Fig. 3

Binary fiber optic delay line (BIFODEL).

Fig. 4
Fig. 4

Array partitioning principles.

Fig. 5
Fig. 5

BIFODEL-based compressive delay line architecture for transmit mode.

Fig. 6
Fig. 6

BIFODEL-based compressive delay line architecture for receive mode.

Tables (4)

Tables Icon

Table I Minimum and Maximum Delays Required for Selected Elements

Tables Icon

Table II SRODEL and BIFODEL Comparison for R = 8, 10, and 12 Bits

Tables Icon

Table III Hardware Savings as a Function of the PAA Element Number When N = E = √K

Tables Icon

Table IV Comparison of the Overall Hardware Complexity M C and M U for Selected Values of R and K

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

V = K sin [ 2 π f ( t + D i v i + I i v 2 ) ] = K sin { 2 π f [ t + ( T 1 ) i + ( T 2 ) i sin θ ] } ,
( T 1 ) i + ( T 2 ) i sin θ = constant .
D K - i = ( v 1 / v 2 ) d i sin θ .
T k = d k sin θ M / c             ( k = 1 , 2 , 3 , , K ) ,
T k max = k λ sin θ M / 2 c .
T k min = k λ sin θ R / 2 c .
M f = 2 R ,
M s = 2 ( R - 1 ) ,
D R loss ( dB ) = 10 log 10 [ 2 log 2 ( R ) ] .
T max = ( 2 0 + 2 1 + 2 2 + + 2 N - 1 ) Δ T = ( 2 N - 1 ) Δ T .
M f = M s = log 2 ( R ) ,
D R loss ( dB ) = 10 log 10 ( log 2 R ) .
j = [ ( k - 1 ) / N ] + 1 ,
i = k - ( j - 1 ) N ,
T j i = T k = T i + ( j - 1 ) T N ,
M D L = 2 ( K - 1 ) .
M C = M f l s × M D L = ( log 2 R ) × ( 2 K - 2 ) ,

Metrics