Abstract

We describe measurements of particle size during the course of a latex emulsion polymerization reaction using fiber optic dynamic light scattering (FODLS). These measurements are compared to results from dynamic light scattering (DLS) measurements performed in the usual way on diluted samples. It is shown that the FODLS measurements follow the DLS results and reliably track the growth of the latex particles throughout the reaction. It thus appears that the FODLS technique is useful for the measurement of particle size in highly concentrated samples, such as is found in latex production.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. W. Brown, “Optical Fibre Sensing Using Light Scattering Techniques,” J. Phys. E 20, 1312–1320 (1987).
    [CrossRef]
  2. H. Auweter, D. Horn, “Fiber-Optical Quasi-Elastic Light Scattering of Concentrated Dispersions,” J. Colloid Interface Sci. 105, 399–409 (1985).
    [CrossRef]
  3. R. Falciai, E. Piano, C. Pontiggia, “Use of Optical Fiber to Measure Dynamic Light Scattering,” Appl. Opt. 25, 3983–3984 (1986).
    [CrossRef] [PubMed]
  4. J. C. Thomas, S. C. Tjin, “Fiber Optic Dynamic Light Scattering (FODLS) from Concentrated Suspensions,” J. Colloid Interface Sci. 129, 15–31 (1989).
    [CrossRef]
  5. H. Dhadwal, B. Chu, “A Fiber-Optic Light-Scattering Spectrometer,” Rev. Sci. Instrum. 60, 845–853 (1989).
    [CrossRef]
  6. J. C. Thomas, “Fiber Optic Dynamic Light Scattering from Concentrated Disprsions. 2. Concentration Dependence of the Apparent Diffusion Coefficient,” Langmuir 5, 1350–1355 (1989).
    [CrossRef]
  7. D. E. Koppel, “Analysis of Macromolecular Polydispersity in Intensity Correlation Spectroscopy: The Method of Cumulants,” J. Chem. Phys. 57, 4814–4820 (1972).
    [CrossRef]
  8. J. C. Brown, P. N. Pusey, R. Dietz, “Photon Correlation Study of Polydisperse Samples of Polystyrene in Cyclohexane,” J. Chem. Phys. 62, 1136–1144 (1975).
    [CrossRef]

1989 (3)

J. C. Thomas, S. C. Tjin, “Fiber Optic Dynamic Light Scattering (FODLS) from Concentrated Suspensions,” J. Colloid Interface Sci. 129, 15–31 (1989).
[CrossRef]

H. Dhadwal, B. Chu, “A Fiber-Optic Light-Scattering Spectrometer,” Rev. Sci. Instrum. 60, 845–853 (1989).
[CrossRef]

J. C. Thomas, “Fiber Optic Dynamic Light Scattering from Concentrated Disprsions. 2. Concentration Dependence of the Apparent Diffusion Coefficient,” Langmuir 5, 1350–1355 (1989).
[CrossRef]

1987 (1)

R. G. W. Brown, “Optical Fibre Sensing Using Light Scattering Techniques,” J. Phys. E 20, 1312–1320 (1987).
[CrossRef]

1986 (1)

1985 (1)

H. Auweter, D. Horn, “Fiber-Optical Quasi-Elastic Light Scattering of Concentrated Dispersions,” J. Colloid Interface Sci. 105, 399–409 (1985).
[CrossRef]

1975 (1)

J. C. Brown, P. N. Pusey, R. Dietz, “Photon Correlation Study of Polydisperse Samples of Polystyrene in Cyclohexane,” J. Chem. Phys. 62, 1136–1144 (1975).
[CrossRef]

1972 (1)

D. E. Koppel, “Analysis of Macromolecular Polydispersity in Intensity Correlation Spectroscopy: The Method of Cumulants,” J. Chem. Phys. 57, 4814–4820 (1972).
[CrossRef]

Auweter, H.

H. Auweter, D. Horn, “Fiber-Optical Quasi-Elastic Light Scattering of Concentrated Dispersions,” J. Colloid Interface Sci. 105, 399–409 (1985).
[CrossRef]

Brown, J. C.

J. C. Brown, P. N. Pusey, R. Dietz, “Photon Correlation Study of Polydisperse Samples of Polystyrene in Cyclohexane,” J. Chem. Phys. 62, 1136–1144 (1975).
[CrossRef]

Brown, R. G. W.

R. G. W. Brown, “Optical Fibre Sensing Using Light Scattering Techniques,” J. Phys. E 20, 1312–1320 (1987).
[CrossRef]

Chu, B.

H. Dhadwal, B. Chu, “A Fiber-Optic Light-Scattering Spectrometer,” Rev. Sci. Instrum. 60, 845–853 (1989).
[CrossRef]

Dhadwal, H.

H. Dhadwal, B. Chu, “A Fiber-Optic Light-Scattering Spectrometer,” Rev. Sci. Instrum. 60, 845–853 (1989).
[CrossRef]

Dietz, R.

J. C. Brown, P. N. Pusey, R. Dietz, “Photon Correlation Study of Polydisperse Samples of Polystyrene in Cyclohexane,” J. Chem. Phys. 62, 1136–1144 (1975).
[CrossRef]

Falciai, R.

Horn, D.

H. Auweter, D. Horn, “Fiber-Optical Quasi-Elastic Light Scattering of Concentrated Dispersions,” J. Colloid Interface Sci. 105, 399–409 (1985).
[CrossRef]

Koppel, D. E.

D. E. Koppel, “Analysis of Macromolecular Polydispersity in Intensity Correlation Spectroscopy: The Method of Cumulants,” J. Chem. Phys. 57, 4814–4820 (1972).
[CrossRef]

Piano, E.

Pontiggia, C.

Pusey, P. N.

J. C. Brown, P. N. Pusey, R. Dietz, “Photon Correlation Study of Polydisperse Samples of Polystyrene in Cyclohexane,” J. Chem. Phys. 62, 1136–1144 (1975).
[CrossRef]

Thomas, J. C.

J. C. Thomas, “Fiber Optic Dynamic Light Scattering from Concentrated Disprsions. 2. Concentration Dependence of the Apparent Diffusion Coefficient,” Langmuir 5, 1350–1355 (1989).
[CrossRef]

J. C. Thomas, S. C. Tjin, “Fiber Optic Dynamic Light Scattering (FODLS) from Concentrated Suspensions,” J. Colloid Interface Sci. 129, 15–31 (1989).
[CrossRef]

Tjin, S. C.

J. C. Thomas, S. C. Tjin, “Fiber Optic Dynamic Light Scattering (FODLS) from Concentrated Suspensions,” J. Colloid Interface Sci. 129, 15–31 (1989).
[CrossRef]

Appl. Opt. (1)

J. Chem. Phys. (2)

D. E. Koppel, “Analysis of Macromolecular Polydispersity in Intensity Correlation Spectroscopy: The Method of Cumulants,” J. Chem. Phys. 57, 4814–4820 (1972).
[CrossRef]

J. C. Brown, P. N. Pusey, R. Dietz, “Photon Correlation Study of Polydisperse Samples of Polystyrene in Cyclohexane,” J. Chem. Phys. 62, 1136–1144 (1975).
[CrossRef]

J. Colloid Interface Sci. (2)

J. C. Thomas, S. C. Tjin, “Fiber Optic Dynamic Light Scattering (FODLS) from Concentrated Suspensions,” J. Colloid Interface Sci. 129, 15–31 (1989).
[CrossRef]

H. Auweter, D. Horn, “Fiber-Optical Quasi-Elastic Light Scattering of Concentrated Dispersions,” J. Colloid Interface Sci. 105, 399–409 (1985).
[CrossRef]

J. Phys. E (1)

R. G. W. Brown, “Optical Fibre Sensing Using Light Scattering Techniques,” J. Phys. E 20, 1312–1320 (1987).
[CrossRef]

Langmuir (1)

J. C. Thomas, “Fiber Optic Dynamic Light Scattering from Concentrated Disprsions. 2. Concentration Dependence of the Apparent Diffusion Coefficient,” Langmuir 5, 1350–1355 (1989).
[CrossRef]

Rev. Sci. Instrum. (1)

H. Dhadwal, B. Chu, “A Fiber-Optic Light-Scattering Spectrometer,” Rev. Sci. Instrum. 60, 845–853 (1989).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Experimental setup for FODLS measurements.

Fig. 2
Fig. 2

Latex particle size as a function of reaction time [□ determined by standard (very dilute) DLS measurements; ◇, determined by FODLS measurements directly on an undiluted sample].

Tables (1)

Tables Icon

Table I Latex Particle Size Variation with Reaction Time

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

g ( 2 ) ( τ ) = n ( 0 ) n ( τ ) n 2 ,
g ( 2 ) ( τ ) = 1 + b [ 2 n s n LO g ( 1 ) ( τ ) + n s 2 g ( 1 ) ( τ ) 2 ] n 2 .
n = n LO + n s
g ( 1 ) ( τ ) = exp ( - Γ τ ) .
Γ = K 2 D ,
K = 4 π n sin ( θ / 2 ) λ 0
D = k B T 6 π η r .

Metrics