Abstract

An algorithm is described for the fringe analysis in laser speckle velocimetry. Based on the 2-D fast Fourier transform, the method relies on inherent features in the fringe pattern to remove efficiently the influence of the diffraction halo. A windowing operation is performed to enhance the reliability and reduce the influence of various noise contributions.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Wozniak, G. Wozniak, T. Rosgen, “Experimental Investigation of the Thermocapillary Flow Around a Bubble by Means of Laser-Speckle-Velocimetry,” in Proceedings, Seventh European Symposium on Materials and Fluid Sciences in Microgravity, European Space Agency, Oxford U.K., ESA-SP 295 (1989).
  2. D. W. Robinson, “Automatic Fringe Analysis with a Computer Image-Processing System,” Appl. Opt. 22, 2169–2176 (1983).
    [CrossRef] [PubMed]
  3. H. D. Navone, G. H. Kaufmann, “Automatic Digital Processing in Speckle Photography: Comparison of Two Algorithms,” Appl. Opt. 28, 350–353 (1989).
    [CrossRef] [PubMed]
  4. R. Erbeck, “Fast Image Processing with a Microcomputer Applied to Speckle Photography,” Appl. Opt. 24, 3838–3841 (1985).
    [CrossRef] [PubMed]
  5. G. H. Kaufmann, “Numerical Processing of Speckle Photography Data by Fourier Transform,” Appl. Opt. 20, 4277–4280 (1981).
    [CrossRef] [PubMed]
  6. S. Toyooka, Y. Iwaasa, M. Kawahashi, K. Hosoi, M. Suzuki, “Automatic Processing of Young’s Fringes in Speckle Photography,” Opt. Lasers Eng. 6, 203–212 (1985).
    [CrossRef]
  7. R. Meynart, “Instantaneous Velocity Field Measurements in Unsteady Gas Flow by Speckle Velocimetry,” Appl. Opt. 22, 535–540 (1983).
    [CrossRef] [PubMed]
  8. R. Meynart, “Speckle Measurements of Convection in a Liquid Cooled from Above,” J. Fluid Mech. 182, 235–254 (1987).
    [CrossRef]
  9. R. Meynart, “Digital Processing for Speckle Flow Velocimetry,” Rev. Sci. Instrum. 53, 110–111 (1982).
    [CrossRef]
  10. L. Hesselink, “Digital Image Processing in Flow Visualization,” Ann. Rev. Fluid Mech. 20, 421–485 (1988).
    [CrossRef]
  11. J. M. Huntley, “An Image Processing System for the Analysis of Speckle Photographs,” J. Phys. E 19, 43–49 (1986).
    [CrossRef]
  12. Y. C. Cho, “Digital Image Velocimetry,” Appl. Opt. 28, 740–748 (1989).
    [CrossRef] [PubMed]
  13. L. R. Rabiner, R. W. Schafer, C. M. Rader, “The Chirp z-Transform and its Application,” Bell Syst. Tech. J. 48, 1249–1292 (May–June1969).
  14. J. M. Huntley, “Speckle Photography Fringe Analysis by the Walsh Transform,” Appl. Opt. 25, 382–385 (1986).
    [CrossRef] [PubMed]

1989

1988

L. Hesselink, “Digital Image Processing in Flow Visualization,” Ann. Rev. Fluid Mech. 20, 421–485 (1988).
[CrossRef]

1987

R. Meynart, “Speckle Measurements of Convection in a Liquid Cooled from Above,” J. Fluid Mech. 182, 235–254 (1987).
[CrossRef]

1986

J. M. Huntley, “An Image Processing System for the Analysis of Speckle Photographs,” J. Phys. E 19, 43–49 (1986).
[CrossRef]

J. M. Huntley, “Speckle Photography Fringe Analysis by the Walsh Transform,” Appl. Opt. 25, 382–385 (1986).
[CrossRef] [PubMed]

1985

R. Erbeck, “Fast Image Processing with a Microcomputer Applied to Speckle Photography,” Appl. Opt. 24, 3838–3841 (1985).
[CrossRef] [PubMed]

S. Toyooka, Y. Iwaasa, M. Kawahashi, K. Hosoi, M. Suzuki, “Automatic Processing of Young’s Fringes in Speckle Photography,” Opt. Lasers Eng. 6, 203–212 (1985).
[CrossRef]

1983

1982

R. Meynart, “Digital Processing for Speckle Flow Velocimetry,” Rev. Sci. Instrum. 53, 110–111 (1982).
[CrossRef]

1981

1969

L. R. Rabiner, R. W. Schafer, C. M. Rader, “The Chirp z-Transform and its Application,” Bell Syst. Tech. J. 48, 1249–1292 (May–June1969).

Cho, Y. C.

Erbeck, R.

Hesselink, L.

L. Hesselink, “Digital Image Processing in Flow Visualization,” Ann. Rev. Fluid Mech. 20, 421–485 (1988).
[CrossRef]

Hosoi, K.

S. Toyooka, Y. Iwaasa, M. Kawahashi, K. Hosoi, M. Suzuki, “Automatic Processing of Young’s Fringes in Speckle Photography,” Opt. Lasers Eng. 6, 203–212 (1985).
[CrossRef]

Huntley, J. M.

J. M. Huntley, “An Image Processing System for the Analysis of Speckle Photographs,” J. Phys. E 19, 43–49 (1986).
[CrossRef]

J. M. Huntley, “Speckle Photography Fringe Analysis by the Walsh Transform,” Appl. Opt. 25, 382–385 (1986).
[CrossRef] [PubMed]

Iwaasa, Y.

S. Toyooka, Y. Iwaasa, M. Kawahashi, K. Hosoi, M. Suzuki, “Automatic Processing of Young’s Fringes in Speckle Photography,” Opt. Lasers Eng. 6, 203–212 (1985).
[CrossRef]

Kaufmann, G. H.

Kawahashi, M.

S. Toyooka, Y. Iwaasa, M. Kawahashi, K. Hosoi, M. Suzuki, “Automatic Processing of Young’s Fringes in Speckle Photography,” Opt. Lasers Eng. 6, 203–212 (1985).
[CrossRef]

Meynart, R.

R. Meynart, “Speckle Measurements of Convection in a Liquid Cooled from Above,” J. Fluid Mech. 182, 235–254 (1987).
[CrossRef]

R. Meynart, “Instantaneous Velocity Field Measurements in Unsteady Gas Flow by Speckle Velocimetry,” Appl. Opt. 22, 535–540 (1983).
[CrossRef] [PubMed]

R. Meynart, “Digital Processing for Speckle Flow Velocimetry,” Rev. Sci. Instrum. 53, 110–111 (1982).
[CrossRef]

Navone, H. D.

Rabiner, L. R.

L. R. Rabiner, R. W. Schafer, C. M. Rader, “The Chirp z-Transform and its Application,” Bell Syst. Tech. J. 48, 1249–1292 (May–June1969).

Rader, C. M.

L. R. Rabiner, R. W. Schafer, C. M. Rader, “The Chirp z-Transform and its Application,” Bell Syst. Tech. J. 48, 1249–1292 (May–June1969).

Robinson, D. W.

Rosgen, T.

K. Wozniak, G. Wozniak, T. Rosgen, “Experimental Investigation of the Thermocapillary Flow Around a Bubble by Means of Laser-Speckle-Velocimetry,” in Proceedings, Seventh European Symposium on Materials and Fluid Sciences in Microgravity, European Space Agency, Oxford U.K., ESA-SP 295 (1989).

Schafer, R. W.

L. R. Rabiner, R. W. Schafer, C. M. Rader, “The Chirp z-Transform and its Application,” Bell Syst. Tech. J. 48, 1249–1292 (May–June1969).

Suzuki, M.

S. Toyooka, Y. Iwaasa, M. Kawahashi, K. Hosoi, M. Suzuki, “Automatic Processing of Young’s Fringes in Speckle Photography,” Opt. Lasers Eng. 6, 203–212 (1985).
[CrossRef]

Toyooka, S.

S. Toyooka, Y. Iwaasa, M. Kawahashi, K. Hosoi, M. Suzuki, “Automatic Processing of Young’s Fringes in Speckle Photography,” Opt. Lasers Eng. 6, 203–212 (1985).
[CrossRef]

Wozniak, G.

K. Wozniak, G. Wozniak, T. Rosgen, “Experimental Investigation of the Thermocapillary Flow Around a Bubble by Means of Laser-Speckle-Velocimetry,” in Proceedings, Seventh European Symposium on Materials and Fluid Sciences in Microgravity, European Space Agency, Oxford U.K., ESA-SP 295 (1989).

Wozniak, K.

K. Wozniak, G. Wozniak, T. Rosgen, “Experimental Investigation of the Thermocapillary Flow Around a Bubble by Means of Laser-Speckle-Velocimetry,” in Proceedings, Seventh European Symposium on Materials and Fluid Sciences in Microgravity, European Space Agency, Oxford U.K., ESA-SP 295 (1989).

Ann. Rev. Fluid Mech.

L. Hesselink, “Digital Image Processing in Flow Visualization,” Ann. Rev. Fluid Mech. 20, 421–485 (1988).
[CrossRef]

Appl. Opt.

Bell Syst. Tech. J.

L. R. Rabiner, R. W. Schafer, C. M. Rader, “The Chirp z-Transform and its Application,” Bell Syst. Tech. J. 48, 1249–1292 (May–June1969).

J. Fluid Mech.

R. Meynart, “Speckle Measurements of Convection in a Liquid Cooled from Above,” J. Fluid Mech. 182, 235–254 (1987).
[CrossRef]

J. Phys. E

J. M. Huntley, “An Image Processing System for the Analysis of Speckle Photographs,” J. Phys. E 19, 43–49 (1986).
[CrossRef]

Opt. Lasers Eng.

S. Toyooka, Y. Iwaasa, M. Kawahashi, K. Hosoi, M. Suzuki, “Automatic Processing of Young’s Fringes in Speckle Photography,” Opt. Lasers Eng. 6, 203–212 (1985).
[CrossRef]

Rev. Sci. Instrum.

R. Meynart, “Digital Processing for Speckle Flow Velocimetry,” Rev. Sci. Instrum. 53, 110–111 (1982).
[CrossRef]

Other

K. Wozniak, G. Wozniak, T. Rosgen, “Experimental Investigation of the Thermocapillary Flow Around a Bubble by Means of Laser-Speckle-Velocimetry,” in Proceedings, Seventh European Symposium on Materials and Fluid Sciences in Microgravity, European Space Agency, Oxford U.K., ESA-SP 295 (1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimentally recorded fringe pattern with reduced image quality (resolution 128 × 128 pixels).

Fig. 2
Fig. 2

Simulated fringe pattern including specular noise (128 × 128 pixels).

Fig. 3
Fig. 3

Power spectrum of Fig. 1 with the Hanning window applied. Data are displayed in a 16 × 16-pixel domain around the frequency origin.

Fig. 4
Fig. 4

Power spectrum of Fig. 2. Processing is the same as for Fig. 3.

Fig. 5
Fig. 5

Subtraction spectrum of Fig. 3.

Fig. 6
Fig. 6

Subtraction spectrum of Fig. 4.

Fig. 7
Fig. 7

Subtraction spectrum for on-axis fringes with the modified Hanning window applied. Note the appearance of extraneous peaks.

Fig. 8
Fig. 8

Subtraction spectrum as in Fig. 7 but with the Gaussian window applied.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) = S ( x , y ) × H ( x , y ) × P ( x , y ) + N ( x , y ) .
H ( x , y ) = H ( x 2 + y 2 ) = H ( r ) ,
F { I ( x , y ) } = F { H ( r ) } F { P ( x , y ) } ,
P ( x , y ) = a + b cos [ 2 π ( k x + l y ) ] ,
W H ( r ) = { 1 ( r < r 0 ) , 0.5 [ 1 + cos ( π r - r 0 r 1 - r 0 ) ] ( r 0 < r < r 1 ) , 0 ( r 1 < r ) .
W G ( r ) = exp [ - ( r / r 0 ) 2 ] ,

Metrics