Abstract

We propose, analyze and experimentally demonstrate the amplification and detection of microwave signals transmitted on dual frequency optical carriers, using two wave mixing with differential gain in BaTiO3.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. N. Lee, “Optical Architectures for Temporal Signal Processing,” in Optical Signal Processing, J. L. Horner, Ed. (Academic, New York, 1987), p. 165.
  2. K. B. Bhasin, R. R. Kunath, “Optical Interconnected Phased Arrays,” Soc. Photo-Opt. Instrum. Eng. 947, 36–43 (1988).
  3. D. Dolfi, J.-P. Huignard, M. Baril, “Optically Controlled True Time Delays for Phased Array Antenna,” Proc. Soc. Photo-Opt. Instrum. Eng. 1102, 152–161 (1989).
  4. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic Storage in Electrooptic Crystals,” Ferroelectrics 22, 949–961 (1979).
    [CrossRef]
  5. P. Yeh, “Two Wave Mixing in Nonlinear Media,” IEEE J. Quantum. Electron. QE-25, 484–519 (1989).
    [CrossRef]
  6. R. H. Kingston, Detection of Optical and Infrared Radiation (Springer-Verlag, New York, 1978), pp. 25–42.
  7. A. Marrakchi, J.-P. Huignard, P. Günter, “Diffraction Efficiency and Energy Transfer in Two Wave Mixing Experiments with Bi12SiO20 Crystals,” Appl. Phys. 24, 131–138 (1981).
    [CrossRef]
  8. P. Bayvel, I. P. Giles, “Frequency Generation by Four Wave Mixing in All Fibre Single Mode Ring Resonator,” Electron. Lett. 25, 1178–1179 (1989).
    [CrossRef]
  9. Y. Fainman, E. Klancnik;, S. H. Lee, “Optimal Coherent Image Amplification by Two Wave Coupling in Photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).
  10. D. Rak, I. Ledoux, J.-P. Huignard, “Two Wave Mixing and Energy Transfer in BaTiO3. Application to Laser Beamsteering,” Opt;. Commun. 49, 302–306 (1984).
  11. K. I. Zemskov et al., “Holographic Preamplifier for a Quantum Amplifier,” JETP Lett. 48, 202–205 (1988).
  12. J. Afnaud, “Enhancement of Optical Receiver Sensitivities by Amplification of the Carrier,” IEEE J. Quantum. Electron. QE-4, No. 11, 893–899 (1968).
  13. J. Feinberg, “Asymmetric Self-Defocusing of an Optical Beam from the Photorefractive Effect,” J. Opt. Soc. Am. 72, 46–51 (1982).
    [CrossRef]
  14. H. Rajbenbach, A. Delboulbé, J.-P. Huignard, “Noise Suppression in Photorefractive Image Amplifiers,” Opt. Lett. 14, 1275–1277 (1989).
    [CrossRef] [PubMed]
  15. G. Hamel de Montchenault, J.-P. Huignard, “Two Wave Mixing with Time Modulated Signal in Bi12SiO20—Theory and Application to Homodyne Wavefront Detection,” J. Appl. Phys. 63, 624–627 (1988).
    [CrossRef]
  16. F. M. Davidson, L. Boutsikaris, M. A. Krainak, “Coherent Optical Detection Through Two-Wave Mixing in Photorefractive Materials,” Opt. Lett. 13, 506–508 (1988).
    [CrossRef] [PubMed]

1989 (4)

D. Dolfi, J.-P. Huignard, M. Baril, “Optically Controlled True Time Delays for Phased Array Antenna,” Proc. Soc. Photo-Opt. Instrum. Eng. 1102, 152–161 (1989).

P. Yeh, “Two Wave Mixing in Nonlinear Media,” IEEE J. Quantum. Electron. QE-25, 484–519 (1989).
[CrossRef]

P. Bayvel, I. P. Giles, “Frequency Generation by Four Wave Mixing in All Fibre Single Mode Ring Resonator,” Electron. Lett. 25, 1178–1179 (1989).
[CrossRef]

H. Rajbenbach, A. Delboulbé, J.-P. Huignard, “Noise Suppression in Photorefractive Image Amplifiers,” Opt. Lett. 14, 1275–1277 (1989).
[CrossRef] [PubMed]

1988 (4)

G. Hamel de Montchenault, J.-P. Huignard, “Two Wave Mixing with Time Modulated Signal in Bi12SiO20—Theory and Application to Homodyne Wavefront Detection,” J. Appl. Phys. 63, 624–627 (1988).
[CrossRef]

F. M. Davidson, L. Boutsikaris, M. A. Krainak, “Coherent Optical Detection Through Two-Wave Mixing in Photorefractive Materials,” Opt. Lett. 13, 506–508 (1988).
[CrossRef] [PubMed]

K. B. Bhasin, R. R. Kunath, “Optical Interconnected Phased Arrays,” Soc. Photo-Opt. Instrum. Eng. 947, 36–43 (1988).

K. I. Zemskov et al., “Holographic Preamplifier for a Quantum Amplifier,” JETP Lett. 48, 202–205 (1988).

1986 (1)

Y. Fainman, E. Klancnik;, S. H. Lee, “Optimal Coherent Image Amplification by Two Wave Coupling in Photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).

1984 (1)

D. Rak, I. Ledoux, J.-P. Huignard, “Two Wave Mixing and Energy Transfer in BaTiO3. Application to Laser Beamsteering,” Opt;. Commun. 49, 302–306 (1984).

1982 (1)

1981 (1)

A. Marrakchi, J.-P. Huignard, P. Günter, “Diffraction Efficiency and Energy Transfer in Two Wave Mixing Experiments with Bi12SiO20 Crystals,” Appl. Phys. 24, 131–138 (1981).
[CrossRef]

1979 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic Storage in Electrooptic Crystals,” Ferroelectrics 22, 949–961 (1979).
[CrossRef]

1968 (1)

J. Afnaud, “Enhancement of Optical Receiver Sensitivities by Amplification of the Carrier,” IEEE J. Quantum. Electron. QE-4, No. 11, 893–899 (1968).

Afnaud, J.

J. Afnaud, “Enhancement of Optical Receiver Sensitivities by Amplification of the Carrier,” IEEE J. Quantum. Electron. QE-4, No. 11, 893–899 (1968).

Baril, M.

D. Dolfi, J.-P. Huignard, M. Baril, “Optically Controlled True Time Delays for Phased Array Antenna,” Proc. Soc. Photo-Opt. Instrum. Eng. 1102, 152–161 (1989).

Bayvel, P.

P. Bayvel, I. P. Giles, “Frequency Generation by Four Wave Mixing in All Fibre Single Mode Ring Resonator,” Electron. Lett. 25, 1178–1179 (1989).
[CrossRef]

Bhasin, K. B.

K. B. Bhasin, R. R. Kunath, “Optical Interconnected Phased Arrays,” Soc. Photo-Opt. Instrum. Eng. 947, 36–43 (1988).

Boutsikaris, L.

Davidson, F. M.

Delboulbé, A.

Dolfi, D.

D. Dolfi, J.-P. Huignard, M. Baril, “Optically Controlled True Time Delays for Phased Array Antenna,” Proc. Soc. Photo-Opt. Instrum. Eng. 1102, 152–161 (1989).

Fainman, Y.

Y. Fainman, E. Klancnik;, S. H. Lee, “Optimal Coherent Image Amplification by Two Wave Coupling in Photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).

Feinberg, J.

Giles, I. P.

P. Bayvel, I. P. Giles, “Frequency Generation by Four Wave Mixing in All Fibre Single Mode Ring Resonator,” Electron. Lett. 25, 1178–1179 (1989).
[CrossRef]

Günter, P.

A. Marrakchi, J.-P. Huignard, P. Günter, “Diffraction Efficiency and Energy Transfer in Two Wave Mixing Experiments with Bi12SiO20 Crystals,” Appl. Phys. 24, 131–138 (1981).
[CrossRef]

Hamel de Montchenault, G.

G. Hamel de Montchenault, J.-P. Huignard, “Two Wave Mixing with Time Modulated Signal in Bi12SiO20—Theory and Application to Homodyne Wavefront Detection,” J. Appl. Phys. 63, 624–627 (1988).
[CrossRef]

Huignard, J.-P.

H. Rajbenbach, A. Delboulbé, J.-P. Huignard, “Noise Suppression in Photorefractive Image Amplifiers,” Opt. Lett. 14, 1275–1277 (1989).
[CrossRef] [PubMed]

D. Dolfi, J.-P. Huignard, M. Baril, “Optically Controlled True Time Delays for Phased Array Antenna,” Proc. Soc. Photo-Opt. Instrum. Eng. 1102, 152–161 (1989).

G. Hamel de Montchenault, J.-P. Huignard, “Two Wave Mixing with Time Modulated Signal in Bi12SiO20—Theory and Application to Homodyne Wavefront Detection,” J. Appl. Phys. 63, 624–627 (1988).
[CrossRef]

D. Rak, I. Ledoux, J.-P. Huignard, “Two Wave Mixing and Energy Transfer in BaTiO3. Application to Laser Beamsteering,” Opt;. Commun. 49, 302–306 (1984).

A. Marrakchi, J.-P. Huignard, P. Günter, “Diffraction Efficiency and Energy Transfer in Two Wave Mixing Experiments with Bi12SiO20 Crystals,” Appl. Phys. 24, 131–138 (1981).
[CrossRef]

Kingston, R. H.

R. H. Kingston, Detection of Optical and Infrared Radiation (Springer-Verlag, New York, 1978), pp. 25–42.

Klancnik;, E.

Y. Fainman, E. Klancnik;, S. H. Lee, “Optimal Coherent Image Amplification by Two Wave Coupling in Photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).

Krainak, M. A.

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic Storage in Electrooptic Crystals,” Ferroelectrics 22, 949–961 (1979).
[CrossRef]

Kunath, R. R.

K. B. Bhasin, R. R. Kunath, “Optical Interconnected Phased Arrays,” Soc. Photo-Opt. Instrum. Eng. 947, 36–43 (1988).

Ledoux, I.

D. Rak, I. Ledoux, J.-P. Huignard, “Two Wave Mixing and Energy Transfer in BaTiO3. Application to Laser Beamsteering,” Opt;. Commun. 49, 302–306 (1984).

Lee, J. N.

J. N. Lee, “Optical Architectures for Temporal Signal Processing,” in Optical Signal Processing, J. L. Horner, Ed. (Academic, New York, 1987), p. 165.

Lee, S. H.

Y. Fainman, E. Klancnik;, S. H. Lee, “Optimal Coherent Image Amplification by Two Wave Coupling in Photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic Storage in Electrooptic Crystals,” Ferroelectrics 22, 949–961 (1979).
[CrossRef]

Marrakchi, A.

A. Marrakchi, J.-P. Huignard, P. Günter, “Diffraction Efficiency and Energy Transfer in Two Wave Mixing Experiments with Bi12SiO20 Crystals,” Appl. Phys. 24, 131–138 (1981).
[CrossRef]

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic Storage in Electrooptic Crystals,” Ferroelectrics 22, 949–961 (1979).
[CrossRef]

Rajbenbach, H.

Rak, D.

D. Rak, I. Ledoux, J.-P. Huignard, “Two Wave Mixing and Energy Transfer in BaTiO3. Application to Laser Beamsteering,” Opt;. Commun. 49, 302–306 (1984).

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic Storage in Electrooptic Crystals,” Ferroelectrics 22, 949–961 (1979).
[CrossRef]

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic Storage in Electrooptic Crystals,” Ferroelectrics 22, 949–961 (1979).
[CrossRef]

Yeh, P.

P. Yeh, “Two Wave Mixing in Nonlinear Media,” IEEE J. Quantum. Electron. QE-25, 484–519 (1989).
[CrossRef]

Zemskov, K. I.

K. I. Zemskov et al., “Holographic Preamplifier for a Quantum Amplifier,” JETP Lett. 48, 202–205 (1988).

Appl. Phys. (1)

A. Marrakchi, J.-P. Huignard, P. Günter, “Diffraction Efficiency and Energy Transfer in Two Wave Mixing Experiments with Bi12SiO20 Crystals,” Appl. Phys. 24, 131–138 (1981).
[CrossRef]

Electron. Lett. (1)

P. Bayvel, I. P. Giles, “Frequency Generation by Four Wave Mixing in All Fibre Single Mode Ring Resonator,” Electron. Lett. 25, 1178–1179 (1989).
[CrossRef]

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic Storage in Electrooptic Crystals,” Ferroelectrics 22, 949–961 (1979).
[CrossRef]

IEEE J. Quantum. Electron. (2)

P. Yeh, “Two Wave Mixing in Nonlinear Media,” IEEE J. Quantum. Electron. QE-25, 484–519 (1989).
[CrossRef]

J. Afnaud, “Enhancement of Optical Receiver Sensitivities by Amplification of the Carrier,” IEEE J. Quantum. Electron. QE-4, No. 11, 893–899 (1968).

J. Appl. Phys. (1)

G. Hamel de Montchenault, J.-P. Huignard, “Two Wave Mixing with Time Modulated Signal in Bi12SiO20—Theory and Application to Homodyne Wavefront Detection,” J. Appl. Phys. 63, 624–627 (1988).
[CrossRef]

J. Opt. Soc. Am. (1)

JETP Lett. (1)

K. I. Zemskov et al., “Holographic Preamplifier for a Quantum Amplifier,” JETP Lett. 48, 202–205 (1988).

Opt. Eng. (1)

Y. Fainman, E. Klancnik;, S. H. Lee, “Optimal Coherent Image Amplification by Two Wave Coupling in Photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).

Opt. Lett. (2)

Opt;. Commun. (1)

D. Rak, I. Ledoux, J.-P. Huignard, “Two Wave Mixing and Energy Transfer in BaTiO3. Application to Laser Beamsteering,” Opt;. Commun. 49, 302–306 (1984).

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

D. Dolfi, J.-P. Huignard, M. Baril, “Optically Controlled True Time Delays for Phased Array Antenna,” Proc. Soc. Photo-Opt. Instrum. Eng. 1102, 152–161 (1989).

Soc. Photo-Opt. Instrum. Eng. (1)

K. B. Bhasin, R. R. Kunath, “Optical Interconnected Phased Arrays,” Soc. Photo-Opt. Instrum. Eng. 947, 36–43 (1988).

Other (2)

J. N. Lee, “Optical Architectures for Temporal Signal Processing,” in Optical Signal Processing, J. L. Horner, Ed. (Academic, New York, 1987), p. 165.

R. H. Kingston, Detection of Optical and Infrared Radiation (Springer-Verlag, New York, 1978), pp. 25–42.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Two-wave mixing using a dual frequency signal: P, pump beam; S0,S1, signal beam components at frequencies ω0/2π and ω0/2π + fm. P and S have the same linear polarization (↑);S1 ⊙ is cross-polarized; Γ, intrinsic intensity gain per unit of length; l, crystal thickness; (PO), 45° oriented polarizer; (PD), photodiode. (Grating period Λ = 1.5 μm, grating vector to the C-axis tilt angle in the crystal δ = 10°, P2 = 10 mW; ϕp = 20 mm2; S 0 2 = 1.7 μ W ; S 1 2 = 512 μ W ; ϕ 0 2 = ϕ 1 2 = 7 mm 2)

Fig. 2
Fig. 2

Amplification of the detected microwave signal at fm = 2.2 GHz. The upper trace is the detected signal (pump beam off). The lower trace is the amplified microwave signal (pump beam on). The dc components of the photocurrents are filtered. Taking into account the photodiode nonlinearity, γdiff = 17.

Fig. 3
Fig. 3

Experimental demonstration of the photodiode sensitivity enhancement in the presence of an optical photorefractive preamplifier. The upper trace is obtained when the detected signal is equivalent to the noise of the optical detection system (photodiode + electronic amplifier) (pump beam off). On the lower trace the detected signal reappears since it becomes larger than the electronic amplifier noise (pump beam on).

Fig. 4
Fig. 4

Experimental setup for the demonstration of the simultaneous amplification of two dual frequency signals (4-a). Signals at frequency fA = 2.2 GHz (4-b) and frequency fB = 1.6 GHz (4-c). (Upper traces: pump off-lower traces: pump on.) P2 = 60 mW cm−2; S 0 A 2 ~ S 0 B 2 = 0.3 m W cm - 2 ; S 1 A 2 ~ S 1 B 2 = 5 m W cm - 2.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

i ( t ) = ( e η / h ν ) · [ S 1 2 + S 0 2 exp ( Γ l ) + 2 S 1 S 0 exp ( Γ l / 2 ) cos ( 2 π f m t + φ ) ] ,
( pump on )             i s 2 = 2 ( 2 η / h ν ) 2 exp ( Γ l ) S 0 2 S 1 2 ,
( pump off )             i s 2 = 2 ( e η / h ν ) 2 S 0 2 S 1 2 .
( pump on )             i S N 2 = 2 Δ f ( e 2 η / h ν ) exp ( Γ l ) S 0 2 ,
( pump off )             i S N 2 = 2 Δ f ( e 2 η / h ν ) ( S 1 2 + S 0 2 ) .
( S / N ) a = ( η / h ν Δ f ) S 1 2 ,
( S / N ) = 2 ( e η / h ν ) 2 S 1 2 S 0 2 / i e 2 .

Metrics