Abstract

Optoelectronic computing devices with high circuit complexity and a favorable speed-power product can be realized by fabricating a liquid crystal light modulating layer atop a conventional silicon die.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Wada, “Optoelectronic Integration Based on GaAs Material,” Opt. Quantum Electron. 20, 441–474 (1988).
    [CrossRef]
  2. S. H. Lin, J. H. Kim, J. Katz, D. Psaltis, “Integration of High-Gain Double Heterojunction GaAs Bipolar Transistors with a LED for Optical Neural Network Application,” in Proceedings, IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits (IEEE, New York, 1989), pp. 344–352.
    [CrossRef]
  3. R. Reedy, Ph.D. Thesis, U. California, San Diego (1983).
  4. M. L. Burgener, T. H. Lin, “Fabrication of Polysilicon Gate FET in Laser Melted Silicon on Silicon Dioxide on PLZT,” Electron. Lett. 23, 353–354 (1987).
    [CrossRef]
  5. J. H. Wang et al., “NMOS Transistors Fabricated by Simultaneous Laser-Assisted Crystallization and Diffusion of Silicon on Electro-Optic PLZT,” in Fundamentals of Beam-Solid Interactions and Transient Thermal Processing (Materials Research Society, Pittsburgh, 1988), pp. 675–680.
  6. H. Adachi, T. Kawaguchi, K. Setsune, K. Ohji, K. Wasa, “Electro-Optic Studies of (Pb, La) (Zr, Ti)O3 Thin Films Prepared by Planar Magnetron Sputtering,” Appl. Phys. Lett. 42, 867–868 (1983).
    [CrossRef]
  7. G. H. Haertling, “PLZT Electrooptic Materials and Applications—a Review,” Ferroelectrics 75, 25–55 (1987).
    [CrossRef]
  8. H. K. Choi, G. W. Turner, J. C. C. Fan, J. M. Phillips, B.-Y. Tsaur, “Prospects for Monolithic GaAs/Si Integration,” in Heteroepitaxy on Silicon II, J. C. C. Fan, J. M. Phillips, B.-Y. Tsaur, Eds. (Materials Research Society, Pittsburgh, 1987), pp. 213–224.
  9. J. P. Salerno et al., “Epitaxial Growth of GaAs on 4-inch Diameter Silicon Substrates by OMCVD,” in Heteroepitaxy on Silicon II, J. C. C. Fan, J. M. Phillips, B.-Y. Tsaur, Eds. (Materials Research Society, Pittsburgh, 1987), pp. 119–124.
  10. H. Shichijo et al., “Prospects for GaAs-on-Si Circuits,” in Heteroepitaxy on Silicon II, J. C. C. Fan, J. M. Phillips, B.-Y. Tsaur, Eds. (Materials Research Society, Pittsburgh, 1987), pp. 201–212.
  11. R. W. Kaliski et al., “Influence of Annealing and Substrate Orientation on Metalorganic Chemical Vapor Deposition GaAs on Silicon Heteroepitaxy,” J. Appl. Phys. 64, 1196–1200 (1988).
    [CrossRef]
  12. D. R. Meyers, J. F. Klem, J. A. Lott, “(AlGa)As/(InGa)As Strained-Quantum-Well FETs on Silicon Dioxide by Selective Device Lift-Off as an Alternative to Heteroepitaxy,” in Technical Digest, 1988 International Electron Devices Meeting (IEEE, New York, 1988), pp. 704–707.
    [CrossRef]
  13. L. K. Cotter, T. J. Drabik, R. J. Dillon, M. A. Handschy, “Ferroelectric Liquid Crystal Silicon Integrated Circuit Spatial Light Modulator,” Opt. Lett. 15, 291–293 (1990).
    [CrossRef] [PubMed]
  14. MOS Implementation System (MOSIS), USC Information Sciences Institute, 4676 Admiralty Way, Marina Del Rey, CA 90292-6695.
  15. T. J. Drabik, “Optically Interconnected Parallel Processor Arrays,” Ph.D. Thesis, Georgia Institute of Technology, Atlanta (1990), pp. 116–120.
  16. S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981), p. 810.
  17. D. W. Bouldin, “VLSI Designer’s Interface,” IEEE Circuits Devices Mag. 6, No. 3, 6 (1990).
  18. K. Skarp, M. A. Handschy, “Ferroelectric Liquid Crystals. Material Properties and Applications,” Mol. Cryst. Liq. Cryst. 165, 439–509 (1988).
  19. G. Andersson et al., “Submicrosecond Electro-Optic Switching in the Liquid-Crystal Smectic A Phase: The Soft-Mode Ferroelectric Effect,” Appl. Phys. Lett. 51, 640–642 (1987).
    [CrossRef]
  20. L. A. Beresnev, L. M. Blinov, D. I. Dergachev, “Electro-Optical Response of a Thin Layer of a Ferroelectric Liquid Crystal with a Small Pitch and High Spontaneous Polarization,” Ferroelectrics 85, 173–000 (1988).
    [CrossRef]
  21. J. Funfschilling, M. Schadt, “Fast Responding and Highly Multiplexible Distorted Helix Ferroelectric Liquid-Crystal Displays,” J. Appl. Phys. 66, 3877–3882 (1989).
    [CrossRef]
  22. R. C. Eden, B. M. Welch, “GaAs Digital Integrated Circuits for Ultra High Speed LSI/VLSI,” in Very Large Scale Integration (VLSI) Fundamentals and Applications, D. F. Barbe, Ed. (Springer-Verlag, Berlin, 1982), pp. 128–177.
    [CrossRef]
  23. C. Mead, Analog VLSI and Neural Systems (Addison-Wesley, Reading, MA, 1989).
    [CrossRef]
  24. M. Siebert, A. M. Waxman, “Spreading Activation Layers, Visual Saccades, and Invariant Representations for Neural Pattern Recognition Systems,” Neural Networks 2, 9–27 (1989).
    [CrossRef]
  25. Reference 23, Chap. 15.

1990 (2)

1989 (2)

J. Funfschilling, M. Schadt, “Fast Responding and Highly Multiplexible Distorted Helix Ferroelectric Liquid-Crystal Displays,” J. Appl. Phys. 66, 3877–3882 (1989).
[CrossRef]

M. Siebert, A. M. Waxman, “Spreading Activation Layers, Visual Saccades, and Invariant Representations for Neural Pattern Recognition Systems,” Neural Networks 2, 9–27 (1989).
[CrossRef]

1988 (4)

K. Skarp, M. A. Handschy, “Ferroelectric Liquid Crystals. Material Properties and Applications,” Mol. Cryst. Liq. Cryst. 165, 439–509 (1988).

O. Wada, “Optoelectronic Integration Based on GaAs Material,” Opt. Quantum Electron. 20, 441–474 (1988).
[CrossRef]

R. W. Kaliski et al., “Influence of Annealing and Substrate Orientation on Metalorganic Chemical Vapor Deposition GaAs on Silicon Heteroepitaxy,” J. Appl. Phys. 64, 1196–1200 (1988).
[CrossRef]

L. A. Beresnev, L. M. Blinov, D. I. Dergachev, “Electro-Optical Response of a Thin Layer of a Ferroelectric Liquid Crystal with a Small Pitch and High Spontaneous Polarization,” Ferroelectrics 85, 173–000 (1988).
[CrossRef]

1987 (3)

G. H. Haertling, “PLZT Electrooptic Materials and Applications—a Review,” Ferroelectrics 75, 25–55 (1987).
[CrossRef]

M. L. Burgener, T. H. Lin, “Fabrication of Polysilicon Gate FET in Laser Melted Silicon on Silicon Dioxide on PLZT,” Electron. Lett. 23, 353–354 (1987).
[CrossRef]

G. Andersson et al., “Submicrosecond Electro-Optic Switching in the Liquid-Crystal Smectic A Phase: The Soft-Mode Ferroelectric Effect,” Appl. Phys. Lett. 51, 640–642 (1987).
[CrossRef]

1983 (1)

H. Adachi, T. Kawaguchi, K. Setsune, K. Ohji, K. Wasa, “Electro-Optic Studies of (Pb, La) (Zr, Ti)O3 Thin Films Prepared by Planar Magnetron Sputtering,” Appl. Phys. Lett. 42, 867–868 (1983).
[CrossRef]

Adachi, H.

H. Adachi, T. Kawaguchi, K. Setsune, K. Ohji, K. Wasa, “Electro-Optic Studies of (Pb, La) (Zr, Ti)O3 Thin Films Prepared by Planar Magnetron Sputtering,” Appl. Phys. Lett. 42, 867–868 (1983).
[CrossRef]

Andersson, G.

G. Andersson et al., “Submicrosecond Electro-Optic Switching in the Liquid-Crystal Smectic A Phase: The Soft-Mode Ferroelectric Effect,” Appl. Phys. Lett. 51, 640–642 (1987).
[CrossRef]

Beresnev, L. A.

L. A. Beresnev, L. M. Blinov, D. I. Dergachev, “Electro-Optical Response of a Thin Layer of a Ferroelectric Liquid Crystal with a Small Pitch and High Spontaneous Polarization,” Ferroelectrics 85, 173–000 (1988).
[CrossRef]

Blinov, L. M.

L. A. Beresnev, L. M. Blinov, D. I. Dergachev, “Electro-Optical Response of a Thin Layer of a Ferroelectric Liquid Crystal with a Small Pitch and High Spontaneous Polarization,” Ferroelectrics 85, 173–000 (1988).
[CrossRef]

Bouldin, D. W.

D. W. Bouldin, “VLSI Designer’s Interface,” IEEE Circuits Devices Mag. 6, No. 3, 6 (1990).

Burgener, M. L.

M. L. Burgener, T. H. Lin, “Fabrication of Polysilicon Gate FET in Laser Melted Silicon on Silicon Dioxide on PLZT,” Electron. Lett. 23, 353–354 (1987).
[CrossRef]

Choi, H. K.

H. K. Choi, G. W. Turner, J. C. C. Fan, J. M. Phillips, B.-Y. Tsaur, “Prospects for Monolithic GaAs/Si Integration,” in Heteroepitaxy on Silicon II, J. C. C. Fan, J. M. Phillips, B.-Y. Tsaur, Eds. (Materials Research Society, Pittsburgh, 1987), pp. 213–224.

Cotter, L. K.

Dergachev, D. I.

L. A. Beresnev, L. M. Blinov, D. I. Dergachev, “Electro-Optical Response of a Thin Layer of a Ferroelectric Liquid Crystal with a Small Pitch and High Spontaneous Polarization,” Ferroelectrics 85, 173–000 (1988).
[CrossRef]

Dillon, R. J.

Drabik, T. J.

L. K. Cotter, T. J. Drabik, R. J. Dillon, M. A. Handschy, “Ferroelectric Liquid Crystal Silicon Integrated Circuit Spatial Light Modulator,” Opt. Lett. 15, 291–293 (1990).
[CrossRef] [PubMed]

T. J. Drabik, “Optically Interconnected Parallel Processor Arrays,” Ph.D. Thesis, Georgia Institute of Technology, Atlanta (1990), pp. 116–120.

Eden, R. C.

R. C. Eden, B. M. Welch, “GaAs Digital Integrated Circuits for Ultra High Speed LSI/VLSI,” in Very Large Scale Integration (VLSI) Fundamentals and Applications, D. F. Barbe, Ed. (Springer-Verlag, Berlin, 1982), pp. 128–177.
[CrossRef]

Fan, J. C. C.

H. K. Choi, G. W. Turner, J. C. C. Fan, J. M. Phillips, B.-Y. Tsaur, “Prospects for Monolithic GaAs/Si Integration,” in Heteroepitaxy on Silicon II, J. C. C. Fan, J. M. Phillips, B.-Y. Tsaur, Eds. (Materials Research Society, Pittsburgh, 1987), pp. 213–224.

Funfschilling, J.

J. Funfschilling, M. Schadt, “Fast Responding and Highly Multiplexible Distorted Helix Ferroelectric Liquid-Crystal Displays,” J. Appl. Phys. 66, 3877–3882 (1989).
[CrossRef]

Haertling, G. H.

G. H. Haertling, “PLZT Electrooptic Materials and Applications—a Review,” Ferroelectrics 75, 25–55 (1987).
[CrossRef]

Handschy, M. A.

L. K. Cotter, T. J. Drabik, R. J. Dillon, M. A. Handschy, “Ferroelectric Liquid Crystal Silicon Integrated Circuit Spatial Light Modulator,” Opt. Lett. 15, 291–293 (1990).
[CrossRef] [PubMed]

K. Skarp, M. A. Handschy, “Ferroelectric Liquid Crystals. Material Properties and Applications,” Mol. Cryst. Liq. Cryst. 165, 439–509 (1988).

Kaliski, R. W.

R. W. Kaliski et al., “Influence of Annealing and Substrate Orientation on Metalorganic Chemical Vapor Deposition GaAs on Silicon Heteroepitaxy,” J. Appl. Phys. 64, 1196–1200 (1988).
[CrossRef]

Katz, J.

S. H. Lin, J. H. Kim, J. Katz, D. Psaltis, “Integration of High-Gain Double Heterojunction GaAs Bipolar Transistors with a LED for Optical Neural Network Application,” in Proceedings, IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits (IEEE, New York, 1989), pp. 344–352.
[CrossRef]

Kawaguchi, T.

H. Adachi, T. Kawaguchi, K. Setsune, K. Ohji, K. Wasa, “Electro-Optic Studies of (Pb, La) (Zr, Ti)O3 Thin Films Prepared by Planar Magnetron Sputtering,” Appl. Phys. Lett. 42, 867–868 (1983).
[CrossRef]

Kim, J. H.

S. H. Lin, J. H. Kim, J. Katz, D. Psaltis, “Integration of High-Gain Double Heterojunction GaAs Bipolar Transistors with a LED for Optical Neural Network Application,” in Proceedings, IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits (IEEE, New York, 1989), pp. 344–352.
[CrossRef]

Klem, J. F.

D. R. Meyers, J. F. Klem, J. A. Lott, “(AlGa)As/(InGa)As Strained-Quantum-Well FETs on Silicon Dioxide by Selective Device Lift-Off as an Alternative to Heteroepitaxy,” in Technical Digest, 1988 International Electron Devices Meeting (IEEE, New York, 1988), pp. 704–707.
[CrossRef]

Lin, S. H.

S. H. Lin, J. H. Kim, J. Katz, D. Psaltis, “Integration of High-Gain Double Heterojunction GaAs Bipolar Transistors with a LED for Optical Neural Network Application,” in Proceedings, IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits (IEEE, New York, 1989), pp. 344–352.
[CrossRef]

Lin, T. H.

M. L. Burgener, T. H. Lin, “Fabrication of Polysilicon Gate FET in Laser Melted Silicon on Silicon Dioxide on PLZT,” Electron. Lett. 23, 353–354 (1987).
[CrossRef]

Lott, J. A.

D. R. Meyers, J. F. Klem, J. A. Lott, “(AlGa)As/(InGa)As Strained-Quantum-Well FETs on Silicon Dioxide by Selective Device Lift-Off as an Alternative to Heteroepitaxy,” in Technical Digest, 1988 International Electron Devices Meeting (IEEE, New York, 1988), pp. 704–707.
[CrossRef]

Mead, C.

C. Mead, Analog VLSI and Neural Systems (Addison-Wesley, Reading, MA, 1989).
[CrossRef]

Meyers, D. R.

D. R. Meyers, J. F. Klem, J. A. Lott, “(AlGa)As/(InGa)As Strained-Quantum-Well FETs on Silicon Dioxide by Selective Device Lift-Off as an Alternative to Heteroepitaxy,” in Technical Digest, 1988 International Electron Devices Meeting (IEEE, New York, 1988), pp. 704–707.
[CrossRef]

Ohji, K.

H. Adachi, T. Kawaguchi, K. Setsune, K. Ohji, K. Wasa, “Electro-Optic Studies of (Pb, La) (Zr, Ti)O3 Thin Films Prepared by Planar Magnetron Sputtering,” Appl. Phys. Lett. 42, 867–868 (1983).
[CrossRef]

Phillips, J. M.

H. K. Choi, G. W. Turner, J. C. C. Fan, J. M. Phillips, B.-Y. Tsaur, “Prospects for Monolithic GaAs/Si Integration,” in Heteroepitaxy on Silicon II, J. C. C. Fan, J. M. Phillips, B.-Y. Tsaur, Eds. (Materials Research Society, Pittsburgh, 1987), pp. 213–224.

Psaltis, D.

S. H. Lin, J. H. Kim, J. Katz, D. Psaltis, “Integration of High-Gain Double Heterojunction GaAs Bipolar Transistors with a LED for Optical Neural Network Application,” in Proceedings, IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits (IEEE, New York, 1989), pp. 344–352.
[CrossRef]

Reedy, R.

R. Reedy, Ph.D. Thesis, U. California, San Diego (1983).

Salerno, J. P.

J. P. Salerno et al., “Epitaxial Growth of GaAs on 4-inch Diameter Silicon Substrates by OMCVD,” in Heteroepitaxy on Silicon II, J. C. C. Fan, J. M. Phillips, B.-Y. Tsaur, Eds. (Materials Research Society, Pittsburgh, 1987), pp. 119–124.

Schadt, M.

J. Funfschilling, M. Schadt, “Fast Responding and Highly Multiplexible Distorted Helix Ferroelectric Liquid-Crystal Displays,” J. Appl. Phys. 66, 3877–3882 (1989).
[CrossRef]

Setsune, K.

H. Adachi, T. Kawaguchi, K. Setsune, K. Ohji, K. Wasa, “Electro-Optic Studies of (Pb, La) (Zr, Ti)O3 Thin Films Prepared by Planar Magnetron Sputtering,” Appl. Phys. Lett. 42, 867–868 (1983).
[CrossRef]

Shichijo, H.

H. Shichijo et al., “Prospects for GaAs-on-Si Circuits,” in Heteroepitaxy on Silicon II, J. C. C. Fan, J. M. Phillips, B.-Y. Tsaur, Eds. (Materials Research Society, Pittsburgh, 1987), pp. 201–212.

Siebert, M.

M. Siebert, A. M. Waxman, “Spreading Activation Layers, Visual Saccades, and Invariant Representations for Neural Pattern Recognition Systems,” Neural Networks 2, 9–27 (1989).
[CrossRef]

Skarp, K.

K. Skarp, M. A. Handschy, “Ferroelectric Liquid Crystals. Material Properties and Applications,” Mol. Cryst. Liq. Cryst. 165, 439–509 (1988).

Sze, S. M.

S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981), p. 810.

Tsaur, B.-Y.

H. K. Choi, G. W. Turner, J. C. C. Fan, J. M. Phillips, B.-Y. Tsaur, “Prospects for Monolithic GaAs/Si Integration,” in Heteroepitaxy on Silicon II, J. C. C. Fan, J. M. Phillips, B.-Y. Tsaur, Eds. (Materials Research Society, Pittsburgh, 1987), pp. 213–224.

Turner, G. W.

H. K. Choi, G. W. Turner, J. C. C. Fan, J. M. Phillips, B.-Y. Tsaur, “Prospects for Monolithic GaAs/Si Integration,” in Heteroepitaxy on Silicon II, J. C. C. Fan, J. M. Phillips, B.-Y. Tsaur, Eds. (Materials Research Society, Pittsburgh, 1987), pp. 213–224.

Wada, O.

O. Wada, “Optoelectronic Integration Based on GaAs Material,” Opt. Quantum Electron. 20, 441–474 (1988).
[CrossRef]

Wang, J. H.

J. H. Wang et al., “NMOS Transistors Fabricated by Simultaneous Laser-Assisted Crystallization and Diffusion of Silicon on Electro-Optic PLZT,” in Fundamentals of Beam-Solid Interactions and Transient Thermal Processing (Materials Research Society, Pittsburgh, 1988), pp. 675–680.

Wasa, K.

H. Adachi, T. Kawaguchi, K. Setsune, K. Ohji, K. Wasa, “Electro-Optic Studies of (Pb, La) (Zr, Ti)O3 Thin Films Prepared by Planar Magnetron Sputtering,” Appl. Phys. Lett. 42, 867–868 (1983).
[CrossRef]

Waxman, A. M.

M. Siebert, A. M. Waxman, “Spreading Activation Layers, Visual Saccades, and Invariant Representations for Neural Pattern Recognition Systems,” Neural Networks 2, 9–27 (1989).
[CrossRef]

Welch, B. M.

R. C. Eden, B. M. Welch, “GaAs Digital Integrated Circuits for Ultra High Speed LSI/VLSI,” in Very Large Scale Integration (VLSI) Fundamentals and Applications, D. F. Barbe, Ed. (Springer-Verlag, Berlin, 1982), pp. 128–177.
[CrossRef]

Appl. Phys. Lett. (2)

H. Adachi, T. Kawaguchi, K. Setsune, K. Ohji, K. Wasa, “Electro-Optic Studies of (Pb, La) (Zr, Ti)O3 Thin Films Prepared by Planar Magnetron Sputtering,” Appl. Phys. Lett. 42, 867–868 (1983).
[CrossRef]

G. Andersson et al., “Submicrosecond Electro-Optic Switching in the Liquid-Crystal Smectic A Phase: The Soft-Mode Ferroelectric Effect,” Appl. Phys. Lett. 51, 640–642 (1987).
[CrossRef]

Electron. Lett. (1)

M. L. Burgener, T. H. Lin, “Fabrication of Polysilicon Gate FET in Laser Melted Silicon on Silicon Dioxide on PLZT,” Electron. Lett. 23, 353–354 (1987).
[CrossRef]

Ferroelectrics (2)

G. H. Haertling, “PLZT Electrooptic Materials and Applications—a Review,” Ferroelectrics 75, 25–55 (1987).
[CrossRef]

L. A. Beresnev, L. M. Blinov, D. I. Dergachev, “Electro-Optical Response of a Thin Layer of a Ferroelectric Liquid Crystal with a Small Pitch and High Spontaneous Polarization,” Ferroelectrics 85, 173–000 (1988).
[CrossRef]

IEEE Circuits Devices Mag. (1)

D. W. Bouldin, “VLSI Designer’s Interface,” IEEE Circuits Devices Mag. 6, No. 3, 6 (1990).

J. Appl. Phys. (2)

J. Funfschilling, M. Schadt, “Fast Responding and Highly Multiplexible Distorted Helix Ferroelectric Liquid-Crystal Displays,” J. Appl. Phys. 66, 3877–3882 (1989).
[CrossRef]

R. W. Kaliski et al., “Influence of Annealing and Substrate Orientation on Metalorganic Chemical Vapor Deposition GaAs on Silicon Heteroepitaxy,” J. Appl. Phys. 64, 1196–1200 (1988).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

K. Skarp, M. A. Handschy, “Ferroelectric Liquid Crystals. Material Properties and Applications,” Mol. Cryst. Liq. Cryst. 165, 439–509 (1988).

Neural Networks (1)

M. Siebert, A. M. Waxman, “Spreading Activation Layers, Visual Saccades, and Invariant Representations for Neural Pattern Recognition Systems,” Neural Networks 2, 9–27 (1989).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

O. Wada, “Optoelectronic Integration Based on GaAs Material,” Opt. Quantum Electron. 20, 441–474 (1988).
[CrossRef]

Other (13)

S. H. Lin, J. H. Kim, J. Katz, D. Psaltis, “Integration of High-Gain Double Heterojunction GaAs Bipolar Transistors with a LED for Optical Neural Network Application,” in Proceedings, IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits (IEEE, New York, 1989), pp. 344–352.
[CrossRef]

R. Reedy, Ph.D. Thesis, U. California, San Diego (1983).

J. H. Wang et al., “NMOS Transistors Fabricated by Simultaneous Laser-Assisted Crystallization and Diffusion of Silicon on Electro-Optic PLZT,” in Fundamentals of Beam-Solid Interactions and Transient Thermal Processing (Materials Research Society, Pittsburgh, 1988), pp. 675–680.

H. K. Choi, G. W. Turner, J. C. C. Fan, J. M. Phillips, B.-Y. Tsaur, “Prospects for Monolithic GaAs/Si Integration,” in Heteroepitaxy on Silicon II, J. C. C. Fan, J. M. Phillips, B.-Y. Tsaur, Eds. (Materials Research Society, Pittsburgh, 1987), pp. 213–224.

J. P. Salerno et al., “Epitaxial Growth of GaAs on 4-inch Diameter Silicon Substrates by OMCVD,” in Heteroepitaxy on Silicon II, J. C. C. Fan, J. M. Phillips, B.-Y. Tsaur, Eds. (Materials Research Society, Pittsburgh, 1987), pp. 119–124.

H. Shichijo et al., “Prospects for GaAs-on-Si Circuits,” in Heteroepitaxy on Silicon II, J. C. C. Fan, J. M. Phillips, B.-Y. Tsaur, Eds. (Materials Research Society, Pittsburgh, 1987), pp. 201–212.

D. R. Meyers, J. F. Klem, J. A. Lott, “(AlGa)As/(InGa)As Strained-Quantum-Well FETs on Silicon Dioxide by Selective Device Lift-Off as an Alternative to Heteroepitaxy,” in Technical Digest, 1988 International Electron Devices Meeting (IEEE, New York, 1988), pp. 704–707.
[CrossRef]

MOS Implementation System (MOSIS), USC Information Sciences Institute, 4676 Admiralty Way, Marina Del Rey, CA 90292-6695.

T. J. Drabik, “Optically Interconnected Parallel Processor Arrays,” Ph.D. Thesis, Georgia Institute of Technology, Atlanta (1990), pp. 116–120.

S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981), p. 810.

R. C. Eden, B. M. Welch, “GaAs Digital Integrated Circuits for Ultra High Speed LSI/VLSI,” in Very Large Scale Integration (VLSI) Fundamentals and Applications, D. F. Barbe, Ed. (Springer-Verlag, Berlin, 1982), pp. 128–177.
[CrossRef]

C. Mead, Analog VLSI and Neural Systems (Addison-Wesley, Reading, MA, 1989).
[CrossRef]

Reference 23, Chap. 15.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic circuit diagram of thresholding array.

Fig. 2
Fig. 2

Photomicrograph of a portion of the thresholding array; cells on 130-μm square centers. Under uniform illumination (a) with programming current I0 = 17 μA, all cells are above threshold, while in (b) with I0 = 30 μA all cells are below threshold. Under gradient illumination with intensity increasing from right to left all cells are above threshold in (c) with I0 = 0, while in (d) with I0 = 17 μA, only cells on the brightly illuminated side are above threshold.

Fig. 3
Fig. 3

Intensity transfer characteristics of a representative cell. (Inset) Fit of threshold points to linear characteristic.

Fig. 4
Fig. 4

Histogram showing the distribution of the threshold point bias current for all 120 array elements under 0.8 mW/cm2 uniform white light illumination. Unfilled bar segments represent the contribution of cells on the periphery of the array.

Metrics