Abstract

Because of their significant chromatic aberration, holographic optical elements (HOEs) can be used as narrowband optical filters or scanning spectroscopes. Although it is impossible to obtain aberration free imaging over the whole spectrum of light wavelength, by an appropriate choice of HOE recording and imaging geometries, the aberrations can be seriously minimized. As an example, the imaging quality of several different HOEs used in multichannel spectroscopy is analyzed with the aid of numerical evaluation of the respective diffraction integrals. Such computer modeling of imaging gives more adequate results than the geometric ray tracing method.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. T. Bobrov, G. I. Greysukh, Yu. G. Turkevich, Optik a difrakcionnykh elementov (Mashinostroeniye, Leningrad, 1986).
  2. M. Zajac, J. Nowak, A. Gadomski, “Holographic Lens—Study of Imaging Quality,” Opt. Appl. 19, 229–244 (1989).
  3. O. Higuette, J. Santamaria, J. Bescos, “White Light Diffraction Pattern of Amplitude and Phase Zone Plates,” J. Opt. 10, 231–238 (1979).
    [CrossRef]
  4. R. Vila, A. M. de Frutos, S. Mar, “Design of Aberration-Balanced High Efficiency Focusing Holographic Gratings,” Appl. Opt. 27, 3013–3019 (1988).
    [CrossRef] [PubMed]
  5. J. Nowak, M. Zajac, “Investigations of the Influence of Hologram Aberrations on the Light Intensity Distribution in the Image Plane,” Opt. Acta 30, 1749–1767 (1983).
    [CrossRef]
  6. R. J. Coolier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), Chap. 9.

1989 (1)

M. Zajac, J. Nowak, A. Gadomski, “Holographic Lens—Study of Imaging Quality,” Opt. Appl. 19, 229–244 (1989).

1988 (1)

1983 (1)

J. Nowak, M. Zajac, “Investigations of the Influence of Hologram Aberrations on the Light Intensity Distribution in the Image Plane,” Opt. Acta 30, 1749–1767 (1983).
[CrossRef]

1979 (1)

O. Higuette, J. Santamaria, J. Bescos, “White Light Diffraction Pattern of Amplitude and Phase Zone Plates,” J. Opt. 10, 231–238 (1979).
[CrossRef]

Bescos, J.

O. Higuette, J. Santamaria, J. Bescos, “White Light Diffraction Pattern of Amplitude and Phase Zone Plates,” J. Opt. 10, 231–238 (1979).
[CrossRef]

Bobrov, S. T.

S. T. Bobrov, G. I. Greysukh, Yu. G. Turkevich, Optik a difrakcionnykh elementov (Mashinostroeniye, Leningrad, 1986).

Burckhardt, C. B.

R. J. Coolier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), Chap. 9.

Coolier, R. J.

R. J. Coolier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), Chap. 9.

de Frutos, A. M.

Gadomski, A.

M. Zajac, J. Nowak, A. Gadomski, “Holographic Lens—Study of Imaging Quality,” Opt. Appl. 19, 229–244 (1989).

Greysukh, G. I.

S. T. Bobrov, G. I. Greysukh, Yu. G. Turkevich, Optik a difrakcionnykh elementov (Mashinostroeniye, Leningrad, 1986).

Higuette, O.

O. Higuette, J. Santamaria, J. Bescos, “White Light Diffraction Pattern of Amplitude and Phase Zone Plates,” J. Opt. 10, 231–238 (1979).
[CrossRef]

Lin, L. H.

R. J. Coolier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), Chap. 9.

Mar, S.

Nowak, J.

M. Zajac, J. Nowak, A. Gadomski, “Holographic Lens—Study of Imaging Quality,” Opt. Appl. 19, 229–244 (1989).

J. Nowak, M. Zajac, “Investigations of the Influence of Hologram Aberrations on the Light Intensity Distribution in the Image Plane,” Opt. Acta 30, 1749–1767 (1983).
[CrossRef]

Santamaria, J.

O. Higuette, J. Santamaria, J. Bescos, “White Light Diffraction Pattern of Amplitude and Phase Zone Plates,” J. Opt. 10, 231–238 (1979).
[CrossRef]

Turkevich, Yu. G.

S. T. Bobrov, G. I. Greysukh, Yu. G. Turkevich, Optik a difrakcionnykh elementov (Mashinostroeniye, Leningrad, 1986).

Vila, R.

Zajac, M.

M. Zajac, J. Nowak, A. Gadomski, “Holographic Lens—Study of Imaging Quality,” Opt. Appl. 19, 229–244 (1989).

J. Nowak, M. Zajac, “Investigations of the Influence of Hologram Aberrations on the Light Intensity Distribution in the Image Plane,” Opt. Acta 30, 1749–1767 (1983).
[CrossRef]

Appl. Opt. (1)

J. Opt. (1)

O. Higuette, J. Santamaria, J. Bescos, “White Light Diffraction Pattern of Amplitude and Phase Zone Plates,” J. Opt. 10, 231–238 (1979).
[CrossRef]

Opt. Acta (1)

J. Nowak, M. Zajac, “Investigations of the Influence of Hologram Aberrations on the Light Intensity Distribution in the Image Plane,” Opt. Acta 30, 1749–1767 (1983).
[CrossRef]

Opt. Appl. (1)

M. Zajac, J. Nowak, A. Gadomski, “Holographic Lens—Study of Imaging Quality,” Opt. Appl. 19, 229–244 (1989).

Other (2)

S. T. Bobrov, G. I. Greysukh, Yu. G. Turkevich, Optik a difrakcionnykh elementov (Mashinostroeniye, Leningrad, 1986).

R. J. Coolier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), Chap. 9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Geometry of the HOE recording. (b) Geometry of imaging with the HOE as a spectroscope: IS, input slit; HOE, holographic optical element acting as the focusing and dispersive element; OS, output slit; D, light detector.

Fig. 2
Fig. 2

Light intensity distribution in aberration spots for configurations (a) 3A, (b) 3B, (c) 4A, (d) 4B.

Fig. 3
Fig. 3

Light intensity distribution in the perpendicular cross section of the image of a slitlike object calculated by the geometric method taken from Ref. 4 (bar diagram) in comparison with the analogical distribution calculated by the diffraction method (solid line) for configurations (a) 3A, (b) 3B, (c) 4A, (d) 4B.

Fig. 4
Fig. 4

Light intensity distribution in the cross section of the slit image for configuration 3B as a function of wavelength shift but in a fixed image plane: 1, Δλ = 0; 2, Δλ = 0.25; 3, Δλ = 0.50; 4, Δλ = 0.75.

Fig. 5
Fig. 5

Light intensity distribution in the cross section of the slit image for configuration 3B as a function of image plane shift but for a constant wavelength: 1, ΔRI = 0; 2, ΔRI = 0.5; 3, ΔRI = 1.0; 4, ΔRI = 1.5.

Tables (3)

Tables Icon

Table I Geometry of the HOE Recording and Imaging and Some Parameters Characterizing the Aberration Spot

Tables Icon

Table II Some Parameters Characterizing the Aberration Spot as a Function of the Light Wavelength Shift (in a Fixed Image Plane)

Tables Icon

Table III Some Parameters Characterizing the Aberration Spot as a Function of Defocusing (for the Constant Light Wavelength)

Metrics