Abstract

The lineshape of light emission from a titanium vacuum arc was studied using a Fizeau interferometer coupled with an optical multichannel analyzer (OMA). A viewing geometry normal to the cathode surface was employed. Temperatures of ~3 × 105 K and ~3.5 × 104 K were obtained for titanium ions and titanium atoms present in the cathode spot, respectively. In light of results from previous work, a case is made for the latter temperature being the actual heavy species temperature in the cathode spot.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Martin, R. P. Netterfield, D. R. McKenzie, I. S. Falconer, C. G. Pacey, P. Tomas, W. G. Sainty, “Characterization of a Ti Vacuum Arc and Structure of Deposited Ti and TiN Films,” J. Vac. Sci. Technol. A 5, 22–28 (1987).
    [CrossRef]
  2. Z. H. Wang, D. R. McKenzie, “Use of an Optical Multichannel Analyzer in Spectrophotometry,” Appl. Opt. 27, 4960–4963 (1988).
    [CrossRef] [PubMed]
  3. W. F. Meggers, C. H. Corliss, B. F. Scribner, Ed., Tables of Spectral Line Intensities, Part I, Arranged by Elements (U.S. National Bureau of Standards, Washington, DC1975).
  4. P. D. Swift, D. R. McKenzie, I. S. Falconer, P. J. Martin, “Cathode Spot Phenomena in Titanium Vacuum Arcs,” J. Appl. Phys. 66, 505–512 (1989).
    [CrossRef]
  5. T. A. Hall, “Fizeau Interferometer Profiles at Finite Acceptance Angles,” J. Sci. Instrum. 2, 837–840 (1969).
    [CrossRef]
  6. J. Meaburn, Detection and Spectrometry of Faint Light (Reidel, Dordrecht, 1976), p. 117.
  7. G. J. Sloggett, “Fringe Broadening in Fabry-Perot Interferometers, Appl”. Opt. 23, 2427–2432 (1984).
  8. J. Cooper, J. R. Greig, “Rapid Scanning of Spectral Line Profiles Using an Oscillating Fabry-Perot Interferometer,” J. Sci. Instrum. 40, 433–437 (1963).
    [CrossRef]
  9. P. D. Swift, “Spectroscopic Investigations of the Cathode Spot by Fizeau Interferometry,” Ph.D. Thesis, U. Sydney (1990), Chap. 5.
  10. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980).

1989 (1)

P. D. Swift, D. R. McKenzie, I. S. Falconer, P. J. Martin, “Cathode Spot Phenomena in Titanium Vacuum Arcs,” J. Appl. Phys. 66, 505–512 (1989).
[CrossRef]

1988 (1)

1987 (1)

P. J. Martin, R. P. Netterfield, D. R. McKenzie, I. S. Falconer, C. G. Pacey, P. Tomas, W. G. Sainty, “Characterization of a Ti Vacuum Arc and Structure of Deposited Ti and TiN Films,” J. Vac. Sci. Technol. A 5, 22–28 (1987).
[CrossRef]

1984 (1)

G. J. Sloggett, “Fringe Broadening in Fabry-Perot Interferometers, Appl”. Opt. 23, 2427–2432 (1984).

1969 (1)

T. A. Hall, “Fizeau Interferometer Profiles at Finite Acceptance Angles,” J. Sci. Instrum. 2, 837–840 (1969).
[CrossRef]

1963 (1)

J. Cooper, J. R. Greig, “Rapid Scanning of Spectral Line Profiles Using an Oscillating Fabry-Perot Interferometer,” J. Sci. Instrum. 40, 433–437 (1963).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980).

Cooper, J.

J. Cooper, J. R. Greig, “Rapid Scanning of Spectral Line Profiles Using an Oscillating Fabry-Perot Interferometer,” J. Sci. Instrum. 40, 433–437 (1963).
[CrossRef]

Falconer, I. S.

P. D. Swift, D. R. McKenzie, I. S. Falconer, P. J. Martin, “Cathode Spot Phenomena in Titanium Vacuum Arcs,” J. Appl. Phys. 66, 505–512 (1989).
[CrossRef]

P. J. Martin, R. P. Netterfield, D. R. McKenzie, I. S. Falconer, C. G. Pacey, P. Tomas, W. G. Sainty, “Characterization of a Ti Vacuum Arc and Structure of Deposited Ti and TiN Films,” J. Vac. Sci. Technol. A 5, 22–28 (1987).
[CrossRef]

Greig, J. R.

J. Cooper, J. R. Greig, “Rapid Scanning of Spectral Line Profiles Using an Oscillating Fabry-Perot Interferometer,” J. Sci. Instrum. 40, 433–437 (1963).
[CrossRef]

Hall, T. A.

T. A. Hall, “Fizeau Interferometer Profiles at Finite Acceptance Angles,” J. Sci. Instrum. 2, 837–840 (1969).
[CrossRef]

Martin, P. J.

P. D. Swift, D. R. McKenzie, I. S. Falconer, P. J. Martin, “Cathode Spot Phenomena in Titanium Vacuum Arcs,” J. Appl. Phys. 66, 505–512 (1989).
[CrossRef]

P. J. Martin, R. P. Netterfield, D. R. McKenzie, I. S. Falconer, C. G. Pacey, P. Tomas, W. G. Sainty, “Characterization of a Ti Vacuum Arc and Structure of Deposited Ti and TiN Films,” J. Vac. Sci. Technol. A 5, 22–28 (1987).
[CrossRef]

McKenzie, D. R.

P. D. Swift, D. R. McKenzie, I. S. Falconer, P. J. Martin, “Cathode Spot Phenomena in Titanium Vacuum Arcs,” J. Appl. Phys. 66, 505–512 (1989).
[CrossRef]

Z. H. Wang, D. R. McKenzie, “Use of an Optical Multichannel Analyzer in Spectrophotometry,” Appl. Opt. 27, 4960–4963 (1988).
[CrossRef] [PubMed]

P. J. Martin, R. P. Netterfield, D. R. McKenzie, I. S. Falconer, C. G. Pacey, P. Tomas, W. G. Sainty, “Characterization of a Ti Vacuum Arc and Structure of Deposited Ti and TiN Films,” J. Vac. Sci. Technol. A 5, 22–28 (1987).
[CrossRef]

Meaburn, J.

J. Meaburn, Detection and Spectrometry of Faint Light (Reidel, Dordrecht, 1976), p. 117.

Netterfield, R. P.

P. J. Martin, R. P. Netterfield, D. R. McKenzie, I. S. Falconer, C. G. Pacey, P. Tomas, W. G. Sainty, “Characterization of a Ti Vacuum Arc and Structure of Deposited Ti and TiN Films,” J. Vac. Sci. Technol. A 5, 22–28 (1987).
[CrossRef]

Pacey, C. G.

P. J. Martin, R. P. Netterfield, D. R. McKenzie, I. S. Falconer, C. G. Pacey, P. Tomas, W. G. Sainty, “Characterization of a Ti Vacuum Arc and Structure of Deposited Ti and TiN Films,” J. Vac. Sci. Technol. A 5, 22–28 (1987).
[CrossRef]

Sainty, W. G.

P. J. Martin, R. P. Netterfield, D. R. McKenzie, I. S. Falconer, C. G. Pacey, P. Tomas, W. G. Sainty, “Characterization of a Ti Vacuum Arc and Structure of Deposited Ti and TiN Films,” J. Vac. Sci. Technol. A 5, 22–28 (1987).
[CrossRef]

Sloggett, G. J.

G. J. Sloggett, “Fringe Broadening in Fabry-Perot Interferometers, Appl”. Opt. 23, 2427–2432 (1984).

Swift, P. D.

P. D. Swift, D. R. McKenzie, I. S. Falconer, P. J. Martin, “Cathode Spot Phenomena in Titanium Vacuum Arcs,” J. Appl. Phys. 66, 505–512 (1989).
[CrossRef]

P. D. Swift, “Spectroscopic Investigations of the Cathode Spot by Fizeau Interferometry,” Ph.D. Thesis, U. Sydney (1990), Chap. 5.

Tomas, P.

P. J. Martin, R. P. Netterfield, D. R. McKenzie, I. S. Falconer, C. G. Pacey, P. Tomas, W. G. Sainty, “Characterization of a Ti Vacuum Arc and Structure of Deposited Ti and TiN Films,” J. Vac. Sci. Technol. A 5, 22–28 (1987).
[CrossRef]

Wang, Z. H.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980).

Appl. Opt. (1)

Appl”. Opt. (1)

G. J. Sloggett, “Fringe Broadening in Fabry-Perot Interferometers, Appl”. Opt. 23, 2427–2432 (1984).

J. Appl. Phys. (1)

P. D. Swift, D. R. McKenzie, I. S. Falconer, P. J. Martin, “Cathode Spot Phenomena in Titanium Vacuum Arcs,” J. Appl. Phys. 66, 505–512 (1989).
[CrossRef]

J. Sci. Instrum. (2)

T. A. Hall, “Fizeau Interferometer Profiles at Finite Acceptance Angles,” J. Sci. Instrum. 2, 837–840 (1969).
[CrossRef]

J. Cooper, J. R. Greig, “Rapid Scanning of Spectral Line Profiles Using an Oscillating Fabry-Perot Interferometer,” J. Sci. Instrum. 40, 433–437 (1963).
[CrossRef]

J. Vac. Sci. Technol. A (1)

P. J. Martin, R. P. Netterfield, D. R. McKenzie, I. S. Falconer, C. G. Pacey, P. Tomas, W. G. Sainty, “Characterization of a Ti Vacuum Arc and Structure of Deposited Ti and TiN Films,” J. Vac. Sci. Technol. A 5, 22–28 (1987).
[CrossRef]

Other (4)

W. F. Meggers, C. H. Corliss, B. F. Scribner, Ed., Tables of Spectral Line Intensities, Part I, Arranged by Elements (U.S. National Bureau of Standards, Washington, DC1975).

J. Meaburn, Detection and Spectrometry of Faint Light (Reidel, Dordrecht, 1976), p. 117.

P. D. Swift, “Spectroscopic Investigations of the Cathode Spot by Fizeau Interferometry,” Ph.D. Thesis, U. Sydney (1990), Chap. 5.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental arrangement for measurement of titanium emission lines from the vacuum arc: (1) arc trigger; (2) Ti cathode; (3) cathode spot; (4) vacuum window; (5) lens; (6) spectrograph; (7) photodiode array; and (8) OMA.

Fig. 2
Fig. 2

Titanium emission lines from the vacuum arc, with some important ones labeled.

Fig. 3
Fig. 3

Experimental arrangement for measurement of the line shape of titanium emission from the vacuum arc: (1) arc trigger; (2) Ti cathode; (3) cathode spot; (4) vacuum window; (5), (8), (10) lenses; (6) monochromator; (7) pinhole; (9) Fizeau interferometer; (11) photodiode array; and (12) OMA.

Fig. 4
Fig. 4

Comparison of the instrumental profile with a Lorentzian function and a Gaussian function. All the curves have the normalized integral intensity.

Fig. 5
Fig. 5

Fizeau interference pattern of the Hg isotope line (546.1 nm).

Fig. 6
Fig. 6

Fizeau interference pattern of Ti neutral lines: a, Ti i 498.173 nm; b, Ti i 499.951 nm; and c, Ti i 499.107 nm.

Fig. 7
Fig. 7

Fizeau interference pattern of Ti ionized lines: a, Ti ii 376.132 nm; b, Ti ii 375.930 nm; and c, Ti ii 375.769 nm.

Tables (2)

Tables Icon

Table I Linewidth of Observed and Deconvolved Titanium Emission Lines from the Vacuum Arc

Tables Icon

Table II Calculated Results of Velocity Spread Δvz, Temperature T, and Average Energy E For Each Line Studied

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

4 π t λ ( 2 p 3 α 2 3 cos θ + p 2 α sin θ ) < π ,
δ I 2 = δ R 2 + Σ δ i 2 ,
δ T 2 = δ I 2 + δ S 2 ,
δ k = 2 π n t λ ( sin θ k - sin θ 1 tan α ) ,
θ k = θ 1 + 2 ( k - 1 ) α .
I = I 0 T | k = 0 R k - 1 exp ( i δ k ) | 2 ,
Δ ν d = 2 ( 2 ln 2 ) 1 / 2 ν 0 c ( k T m ) 1 / 2 ,
Δ ν d = 7.16 × 10 - 7 ( T M ) 1 / 2 ν 0 .
T = 0.934 × 10 1 / 4 ( δ S λ ) 2 ,
E = 3 2 k T ,
Δ v z = c λ δ S .

Metrics