Abstract

A reflection polarizing holographic optical element with sinusoidal surface-relief has been developed for compact magnetooptical (MO) disk heads. The element has the polarizing beam splitter function as well as the focusing and tracking error signal detection functions. To produce the sinusoidal surface-relief structure with photolithography, a new fabrication process, which includes procedures for converting a rectangular profile into a sinusoidal profile, is introduced. Replicas were also fabricated with high replication fidelity using the photopolymerization method. The developed element was used in an MO disk head. A 57-dB C/N ratio, which is sufficient value for practical use was achieved for a 1-MHz readout signal.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Kimura, S. Sugama, Y. Ono, “Compact Optical Head Using a Holographic Optical Element for CD Players,” Appl. Opt. 27, 668–671 (1988).
    [CrossRef] [PubMed]
  2. Y. Kimura, Y. Ono, “Polarizing Holographic Optical Element for Magneto-optical Disk Head,” in Technical Digest, First Microoptics Conference, Tokyo (1987), pp. 162–165.
  3. E. G. Loewen, M. Neviere, D. Maystre, “Efficiency Optimization of Rectangular Groove Gratings for Use in the Visible and IR Region,” Appl. Opt. 18, 2262–2266 (1979).
    [CrossRef] [PubMed]
  4. Y. Yamanaka, K. Kubota, H. Fujii, K. Kobayashi, T. Suzuki, H. Gokan, “High Density Magneto-optical Recording Using 0.67 μm Band High Power Laser Diode,” IEEE Trans. Magn. MAG-24, 2300–2304 (1988).
    [CrossRef]
  5. A. Ohba et al., “Compact Magneto-optical Disk Head Using Reflection Polarizing Holographic Optical Element,” Proc. Soc. Phot-Opt. Instrum. Eng. 1078, 127–130 (1989).

1989 (1)

A. Ohba et al., “Compact Magneto-optical Disk Head Using Reflection Polarizing Holographic Optical Element,” Proc. Soc. Phot-Opt. Instrum. Eng. 1078, 127–130 (1989).

1988 (2)

Y. Yamanaka, K. Kubota, H. Fujii, K. Kobayashi, T. Suzuki, H. Gokan, “High Density Magneto-optical Recording Using 0.67 μm Band High Power Laser Diode,” IEEE Trans. Magn. MAG-24, 2300–2304 (1988).
[CrossRef]

Y. Kimura, S. Sugama, Y. Ono, “Compact Optical Head Using a Holographic Optical Element for CD Players,” Appl. Opt. 27, 668–671 (1988).
[CrossRef] [PubMed]

1979 (1)

Fujii, H.

Y. Yamanaka, K. Kubota, H. Fujii, K. Kobayashi, T. Suzuki, H. Gokan, “High Density Magneto-optical Recording Using 0.67 μm Band High Power Laser Diode,” IEEE Trans. Magn. MAG-24, 2300–2304 (1988).
[CrossRef]

Gokan, H.

Y. Yamanaka, K. Kubota, H. Fujii, K. Kobayashi, T. Suzuki, H. Gokan, “High Density Magneto-optical Recording Using 0.67 μm Band High Power Laser Diode,” IEEE Trans. Magn. MAG-24, 2300–2304 (1988).
[CrossRef]

Kimura, Y.

Y. Kimura, S. Sugama, Y. Ono, “Compact Optical Head Using a Holographic Optical Element for CD Players,” Appl. Opt. 27, 668–671 (1988).
[CrossRef] [PubMed]

Y. Kimura, Y. Ono, “Polarizing Holographic Optical Element for Magneto-optical Disk Head,” in Technical Digest, First Microoptics Conference, Tokyo (1987), pp. 162–165.

Kobayashi, K.

Y. Yamanaka, K. Kubota, H. Fujii, K. Kobayashi, T. Suzuki, H. Gokan, “High Density Magneto-optical Recording Using 0.67 μm Band High Power Laser Diode,” IEEE Trans. Magn. MAG-24, 2300–2304 (1988).
[CrossRef]

Kubota, K.

Y. Yamanaka, K. Kubota, H. Fujii, K. Kobayashi, T. Suzuki, H. Gokan, “High Density Magneto-optical Recording Using 0.67 μm Band High Power Laser Diode,” IEEE Trans. Magn. MAG-24, 2300–2304 (1988).
[CrossRef]

Loewen, E. G.

Maystre, D.

Neviere, M.

Ohba, A.

A. Ohba et al., “Compact Magneto-optical Disk Head Using Reflection Polarizing Holographic Optical Element,” Proc. Soc. Phot-Opt. Instrum. Eng. 1078, 127–130 (1989).

Ono, Y.

Y. Kimura, S. Sugama, Y. Ono, “Compact Optical Head Using a Holographic Optical Element for CD Players,” Appl. Opt. 27, 668–671 (1988).
[CrossRef] [PubMed]

Y. Kimura, Y. Ono, “Polarizing Holographic Optical Element for Magneto-optical Disk Head,” in Technical Digest, First Microoptics Conference, Tokyo (1987), pp. 162–165.

Sugama, S.

Suzuki, T.

Y. Yamanaka, K. Kubota, H. Fujii, K. Kobayashi, T. Suzuki, H. Gokan, “High Density Magneto-optical Recording Using 0.67 μm Band High Power Laser Diode,” IEEE Trans. Magn. MAG-24, 2300–2304 (1988).
[CrossRef]

Yamanaka, Y.

Y. Yamanaka, K. Kubota, H. Fujii, K. Kobayashi, T. Suzuki, H. Gokan, “High Density Magneto-optical Recording Using 0.67 μm Band High Power Laser Diode,” IEEE Trans. Magn. MAG-24, 2300–2304 (1988).
[CrossRef]

Appl. Opt. (2)

IEEE Trans. Magn. (1)

Y. Yamanaka, K. Kubota, H. Fujii, K. Kobayashi, T. Suzuki, H. Gokan, “High Density Magneto-optical Recording Using 0.67 μm Band High Power Laser Diode,” IEEE Trans. Magn. MAG-24, 2300–2304 (1988).
[CrossRef]

Proc. Soc. Phot-Opt. Instrum. Eng. (1)

A. Ohba et al., “Compact Magneto-optical Disk Head Using Reflection Polarizing Holographic Optical Element,” Proc. Soc. Phot-Opt. Instrum. Eng. 1078, 127–130 (1989).

Other (1)

Y. Kimura, Y. Ono, “Polarizing Holographic Optical Element for Magneto-optical Disk Head,” in Technical Digest, First Microoptics Conference, Tokyo (1987), pp. 162–165.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Polarizing characteristics required of the polarizing beam splitters in an MO disk head: MO disk, magnetooptical disk; LD, laser diode; PBS, polarizing beam splitter.

Fig. 2
Fig. 2

Magnetooptical disk head configuration using a reflection polarizing HOE: LD, laser diode; PBS, polarizing beam splitter; MO disk, magnetooptical disk; HOE, holographic optical element; 2-PD, photodetector with two segments; 6-PD, photodetector with six segments.

Fig. 3
Fig. 3

Incident angle dependence for diffraction efficiency distribution. TE and TM indicate polarizations parallel and perpendicular to a grating groove, respectively.

Fig. 4
Fig. 4

Phase retardation between TE and TM polarizations for a gold surface mirror and gold coated reflection grating. In the gold surface mirror, TE and TM polarizations correspond to s- and p-polarizations.

Fig. 5
Fig. 5

Geometrical relationships among holograms H1–H4 in an HOE and a photodetector with six segments (6-PD) for error signal detection and a photodetector with two segments (2-PD) for readout signal detection.

Fig. 6
Fig. 6

Fabrication process for a reflection polarizing HOE: EB, electron beam.

Fig. 7
Fig. 7

Cross-sectional SEM photograph of a photoresist HOE after baking.

Fig. 8
Fig. 8

Fabricated reflection polarizing HOE. It is ~6 × 12 mm in size and consists of four different holograms for error signal detections.

Fig. 9
Fig. 9

Diffracted beams converging at the position of the photodiode 6-PD for error signal detection.

Fig. 10
Fig. 10

Magnetooptical disk head using a reflection polarizing HOE.

Fig. 11
Fig. 11

s-curve of a measured focus error signal. The linear region range is ~10 μm.

Fig. 12
Fig. 12

One-megahertz readout signal spectrum in 10.4-m/s linear velocity for pit width recording.

Tables (1)

Tables Icon

Table I Diffraction Efficiencies for Fabricated Gratings

Metrics