Abstract

A spatially divided beam splitter is designed, by which the laser diode light couples into multiple fibers using a cylindrical lens and a phase type linear zone plate array. Using skew ray tracing, the focusing characteristics of a spatially divided beam splitter are predicted. A three-section linear zone plate array with the linewidth changing from 1.1 to 2.05 μm was fabricated by holographic mask patterning and deep UV printing. In oblique incident conditions close to the Bragg angle, the diffraction efficiency reached 60%. By combining the linear zone plate array with a cylindrical lens, simultaneous focusing and separation of the laser output are achieved.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Nishihara, T. Suhara, “Micro Fresnel Lenses,” Prog. Opt. 24, 3–17 (1987).
  2. K. Kodate, T. Kamiya, Y. Okada, H. Takenaka, “Focusing Characteristics of High-Efficiency Fresnel Zone Plate Fabricated by Deep Ultraviolet Lithography,” Jpn. J. Appl. Phys. 25, 223–227 (1986).
    [CrossRef]
  3. Y. Okada, K. Kodate, H. Kamiyama, T. Kamiya, “Fiber-Optic Pulse Delay Using Composite Zone Plates for Very Fast Optoelectronics,” Jpn. J. Appl. Phys. 27, 1440–1444 (1988).
    [CrossRef]
  4. X. P. Feng, K. Kodate, T. Kamiya, “Fabrication of High-Efficiency Zone Plate Array with Oblique Incidence Configuration,” Rev. Laser Eng. 16, 836–846 (1988).
    [CrossRef]
  5. R. C. Enger, S. K. Case, “Optical Elements with Ultrahigh Spatial-Frequency Surface Corrugations,” Appl. Opt. 22, 3220–3228 (1983).
    [CrossRef] [PubMed]
  6. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1970).

1988

Y. Okada, K. Kodate, H. Kamiyama, T. Kamiya, “Fiber-Optic Pulse Delay Using Composite Zone Plates for Very Fast Optoelectronics,” Jpn. J. Appl. Phys. 27, 1440–1444 (1988).
[CrossRef]

X. P. Feng, K. Kodate, T. Kamiya, “Fabrication of High-Efficiency Zone Plate Array with Oblique Incidence Configuration,” Rev. Laser Eng. 16, 836–846 (1988).
[CrossRef]

1987

H. Nishihara, T. Suhara, “Micro Fresnel Lenses,” Prog. Opt. 24, 3–17 (1987).

1986

K. Kodate, T. Kamiya, Y. Okada, H. Takenaka, “Focusing Characteristics of High-Efficiency Fresnel Zone Plate Fabricated by Deep Ultraviolet Lithography,” Jpn. J. Appl. Phys. 25, 223–227 (1986).
[CrossRef]

1983

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1970).

Case, S. K.

Enger, R. C.

Feng, X. P.

X. P. Feng, K. Kodate, T. Kamiya, “Fabrication of High-Efficiency Zone Plate Array with Oblique Incidence Configuration,” Rev. Laser Eng. 16, 836–846 (1988).
[CrossRef]

Kamiya, T.

X. P. Feng, K. Kodate, T. Kamiya, “Fabrication of High-Efficiency Zone Plate Array with Oblique Incidence Configuration,” Rev. Laser Eng. 16, 836–846 (1988).
[CrossRef]

Y. Okada, K. Kodate, H. Kamiyama, T. Kamiya, “Fiber-Optic Pulse Delay Using Composite Zone Plates for Very Fast Optoelectronics,” Jpn. J. Appl. Phys. 27, 1440–1444 (1988).
[CrossRef]

K. Kodate, T. Kamiya, Y. Okada, H. Takenaka, “Focusing Characteristics of High-Efficiency Fresnel Zone Plate Fabricated by Deep Ultraviolet Lithography,” Jpn. J. Appl. Phys. 25, 223–227 (1986).
[CrossRef]

Kamiyama, H.

Y. Okada, K. Kodate, H. Kamiyama, T. Kamiya, “Fiber-Optic Pulse Delay Using Composite Zone Plates for Very Fast Optoelectronics,” Jpn. J. Appl. Phys. 27, 1440–1444 (1988).
[CrossRef]

Kodate, K.

Y. Okada, K. Kodate, H. Kamiyama, T. Kamiya, “Fiber-Optic Pulse Delay Using Composite Zone Plates for Very Fast Optoelectronics,” Jpn. J. Appl. Phys. 27, 1440–1444 (1988).
[CrossRef]

X. P. Feng, K. Kodate, T. Kamiya, “Fabrication of High-Efficiency Zone Plate Array with Oblique Incidence Configuration,” Rev. Laser Eng. 16, 836–846 (1988).
[CrossRef]

K. Kodate, T. Kamiya, Y. Okada, H. Takenaka, “Focusing Characteristics of High-Efficiency Fresnel Zone Plate Fabricated by Deep Ultraviolet Lithography,” Jpn. J. Appl. Phys. 25, 223–227 (1986).
[CrossRef]

Nishihara, H.

H. Nishihara, T. Suhara, “Micro Fresnel Lenses,” Prog. Opt. 24, 3–17 (1987).

Okada, Y.

Y. Okada, K. Kodate, H. Kamiyama, T. Kamiya, “Fiber-Optic Pulse Delay Using Composite Zone Plates for Very Fast Optoelectronics,” Jpn. J. Appl. Phys. 27, 1440–1444 (1988).
[CrossRef]

K. Kodate, T. Kamiya, Y. Okada, H. Takenaka, “Focusing Characteristics of High-Efficiency Fresnel Zone Plate Fabricated by Deep Ultraviolet Lithography,” Jpn. J. Appl. Phys. 25, 223–227 (1986).
[CrossRef]

Suhara, T.

H. Nishihara, T. Suhara, “Micro Fresnel Lenses,” Prog. Opt. 24, 3–17 (1987).

Takenaka, H.

K. Kodate, T. Kamiya, Y. Okada, H. Takenaka, “Focusing Characteristics of High-Efficiency Fresnel Zone Plate Fabricated by Deep Ultraviolet Lithography,” Jpn. J. Appl. Phys. 25, 223–227 (1986).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1970).

Appl. Opt.

Jpn. J. Appl. Phys.

K. Kodate, T. Kamiya, Y. Okada, H. Takenaka, “Focusing Characteristics of High-Efficiency Fresnel Zone Plate Fabricated by Deep Ultraviolet Lithography,” Jpn. J. Appl. Phys. 25, 223–227 (1986).
[CrossRef]

Y. Okada, K. Kodate, H. Kamiyama, T. Kamiya, “Fiber-Optic Pulse Delay Using Composite Zone Plates for Very Fast Optoelectronics,” Jpn. J. Appl. Phys. 27, 1440–1444 (1988).
[CrossRef]

Prog. Opt.

H. Nishihara, T. Suhara, “Micro Fresnel Lenses,” Prog. Opt. 24, 3–17 (1987).

Rev. Laser Eng.

X. P. Feng, K. Kodate, T. Kamiya, “Fabrication of High-Efficiency Zone Plate Array with Oblique Incidence Configuration,” Rev. Laser Eng. 16, 836–846 (1988).
[CrossRef]

Other

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of a spatially divided beam splitter with oblique incidence for OEICs.

Fig. 2
Fig. 2

(a) Coordinate system for ray tracing through a cylindrical lens. (b) Explanation of the optical axis of the focusing characteristics.

Fig. 3
Fig. 3

Computed focal image tracing with sixty rays by a cylindrical lens on the focal plane (x-z). Emission angle of LD: θ = 24°; θ|| = 9°.

Fig. 4
Fig. 4

Computed intensity profiles with sixty rays for the focused spot on the focal plane of a three-section LZPA.

Fig. 5
Fig. 5

(a) Top view of a SEM photograph of a three-section LZPA; (b) cross-sectional SEM photograph of a LZP.

Fig. 6
Fig. 6

Experimental arrangement for measuring focusing characteristics of a LZPA: LD, laser diode; Z.P.A., tested LZPA; TV, video monitor; L, focusing lens.

Fig. 7
Fig. 7

Three-focusing pattern formation by LZPA.

Fig. 8
Fig. 8

Round spot formation by a combination of a cylindrical lens and LZP.

Fig. 9
Fig. 9

Dependence of the focusing efficiency on the incident angle.

Tables (1)

Tables Icon

Table I Example of Design Parameters Before Three-Section LZPA

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

2 ω 1 / 2 < d f ,
2 α 0 < sin - 1 ( N . A . fiber ) ;
k 1 × n 1 k 1 n 1 = N ¯ k 2 × n 1 k 2 n 1 ,
k 2 · ( k 1 × n 1 ) = 0 ,
k 2 × n 2 k 2 n 2 = N ¯ k 3 × n 2 k 3 n 2 ,
k 3 · ( k 2 × n 2 ) = 0 ,
L z = a / cos ψ q ,             a = W p / [ tan ( ψ q + ψ m ) - tan ( ψ q - ψ m ) ] ,
b = ( W p ) / tan α 0 .
b = b ( λ / λ ) .
sin θ 1 = ( λ / λ ) ( sin ψ q + sin α 0 ) - sin θ r ,
1 / L z = ( λ / λ ) { ( 1 / L z ) - ( 1 / b ) } + 1 / b ,

Metrics