Abstract

Holographic microlens arrays and elliptical zone plates are fabricated on holographic plates and photoresists by interference between the first- and second-order diffracted waves from an ion etched Fresnel zone plate, which is made by electron-beam scanning and deep UV lithography. This method of fabrication is simple, and a holographic lens with a large numerical aperture and short focal length is obtained. Experimental results of focusing and imaging by a lens array and an elliptical zone plate are given. Two methods of fabricating holographic zone plates for an IR or UV wavelength are also proposed.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. A. Newman, V. E. Rible, “Pinhole Array Camera for Integrated Circuits,” Appl. Opt. 5, 1225–1228 (1966).
    [CrossRef] [PubMed]
  2. A. Kalestynski, B. Smolinska, “Spatial Frequency Sampling by Phase Modulation as a Method of Generating Multiple Images,” Appl. Opt. 16, 2261–2263 (1977).
    [CrossRef] [PubMed]
  3. A. Senthil Kumar, R. M. Vasu, “Multiplexing in Multiple Imaging Through the Theta Modulation Technique,” Opt. Commun. 66, 6–8 (1988).
    [CrossRef]
  4. K. Kodate, T. Kamiya, Y. Okada, H. Takenaka, “Focusing Characteristics of High-Efficiency Fresnel Zone Plate Fabricated by Deep Ultraviolet Lithography,” Jpn. J. Appl. Phys. 25, 223–227 (1986).
    [CrossRef]
  5. N. C. Gallagher, D. W. Sweeney, “Infrared Holographic Optical Elements with Applications to Laser Material Processing,” IEEE J. Quantum Electron. QE-15, 1369–1381 (1979).
    [CrossRef]
  6. D. K. Campbell, D. W. Sweeney, “Materials Processing with CO2 Laser Holographic Scanner Systems,” Appl. Opt. 17, 3727–3737 (1978).
    [CrossRef] [PubMed]

1988 (1)

A. Senthil Kumar, R. M. Vasu, “Multiplexing in Multiple Imaging Through the Theta Modulation Technique,” Opt. Commun. 66, 6–8 (1988).
[CrossRef]

1986 (1)

K. Kodate, T. Kamiya, Y. Okada, H. Takenaka, “Focusing Characteristics of High-Efficiency Fresnel Zone Plate Fabricated by Deep Ultraviolet Lithography,” Jpn. J. Appl. Phys. 25, 223–227 (1986).
[CrossRef]

1979 (1)

N. C. Gallagher, D. W. Sweeney, “Infrared Holographic Optical Elements with Applications to Laser Material Processing,” IEEE J. Quantum Electron. QE-15, 1369–1381 (1979).
[CrossRef]

1978 (1)

1977 (1)

1966 (1)

Campbell, D. K.

Gallagher, N. C.

N. C. Gallagher, D. W. Sweeney, “Infrared Holographic Optical Elements with Applications to Laser Material Processing,” IEEE J. Quantum Electron. QE-15, 1369–1381 (1979).
[CrossRef]

Kalestynski, A.

Kamiya, T.

K. Kodate, T. Kamiya, Y. Okada, H. Takenaka, “Focusing Characteristics of High-Efficiency Fresnel Zone Plate Fabricated by Deep Ultraviolet Lithography,” Jpn. J. Appl. Phys. 25, 223–227 (1986).
[CrossRef]

Kodate, K.

K. Kodate, T. Kamiya, Y. Okada, H. Takenaka, “Focusing Characteristics of High-Efficiency Fresnel Zone Plate Fabricated by Deep Ultraviolet Lithography,” Jpn. J. Appl. Phys. 25, 223–227 (1986).
[CrossRef]

Newman, P. A.

Okada, Y.

K. Kodate, T. Kamiya, Y. Okada, H. Takenaka, “Focusing Characteristics of High-Efficiency Fresnel Zone Plate Fabricated by Deep Ultraviolet Lithography,” Jpn. J. Appl. Phys. 25, 223–227 (1986).
[CrossRef]

Rible, V. E.

Senthil Kumar, A.

A. Senthil Kumar, R. M. Vasu, “Multiplexing in Multiple Imaging Through the Theta Modulation Technique,” Opt. Commun. 66, 6–8 (1988).
[CrossRef]

Smolinska, B.

Sweeney, D. W.

N. C. Gallagher, D. W. Sweeney, “Infrared Holographic Optical Elements with Applications to Laser Material Processing,” IEEE J. Quantum Electron. QE-15, 1369–1381 (1979).
[CrossRef]

D. K. Campbell, D. W. Sweeney, “Materials Processing with CO2 Laser Holographic Scanner Systems,” Appl. Opt. 17, 3727–3737 (1978).
[CrossRef] [PubMed]

Takenaka, H.

K. Kodate, T. Kamiya, Y. Okada, H. Takenaka, “Focusing Characteristics of High-Efficiency Fresnel Zone Plate Fabricated by Deep Ultraviolet Lithography,” Jpn. J. Appl. Phys. 25, 223–227 (1986).
[CrossRef]

Vasu, R. M.

A. Senthil Kumar, R. M. Vasu, “Multiplexing in Multiple Imaging Through the Theta Modulation Technique,” Opt. Commun. 66, 6–8 (1988).
[CrossRef]

Appl. Opt. (3)

IEEE J. Quantum Electron. (1)

N. C. Gallagher, D. W. Sweeney, “Infrared Holographic Optical Elements with Applications to Laser Material Processing,” IEEE J. Quantum Electron. QE-15, 1369–1381 (1979).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Kodate, T. Kamiya, Y. Okada, H. Takenaka, “Focusing Characteristics of High-Efficiency Fresnel Zone Plate Fabricated by Deep Ultraviolet Lithography,” Jpn. J. Appl. Phys. 25, 223–227 (1986).
[CrossRef]

Opt. Commun. (1)

A. Senthil Kumar, R. M. Vasu, “Multiplexing in Multiple Imaging Through the Theta Modulation Technique,” Opt. Commun. 66, 6–8 (1988).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Optical configuration for fabricating holographic zone plate Hz or elliptical zone plate He.

Fig. 2
Fig. 2

Optical configuration for fabricating holographic zone plate Hs for wavelength λ2.

Fig. 3
Fig. 3

Optical configuration for fabricating holographic zone plate Hi for a longer or shorter wavelength.

Fig. 4
Fig. 4

Original Fresnel zone plate.

Fig. 5
Fig. 5

Holographic zone plate Hz. fabricated in the setup of Fig. 1.

Fig. 6
Fig. 6

Spots focused by a 5 × 5 holographic microlens array.

Fig. 7
Fig. 7

Multiple images formed by a holographic microlens array.

Fig. 8
Fig. 8

Image focused by elliptical zone plate He.

Fig. 9
Fig. 9

Spot focused by holographic zone plate Hs, at the 830-nm wavelength of a semiconductor laser.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

A 1 exp ( i ϕ 1 ) = A 1 exp [ - i k r 2 / 2 ( f / 2 - x ) ] .
A 2 exp ( i ϕ 2 ) = A 2 exp [ i k r 2 / 2 ( f / 6 + x ) ] .
I = A 1 2 + A 2 2 + 2 A 1 A 2 cos k r 2 f / [ 3 ( f / 6 + x ) ( f / 2 - x ) ] .
f z = 3 ( f / 6 + x ) ( f / 2 - x ) / 2 f .
D z / 2 f z = [ 2 D / ( f - 2 x ) - f / 6 < x < 0 , 2 D / f X = 0 , 2 D / ( f + 6 x ) 0 < x < f / 2.
a = D f / [ 3 ( 2 f cos θ + D sin θ ) ] ,
b = D / 6 ,
N 3 = D 2 / 12 f λ .
N s = D s 2 / 8 λ 2 f s ,
t = t 0 exp [ - i π r 2 / ( λ 1 f / n 1 ) ] ,             n 1 = 1 , 2 , 3 , ,
V O = exp [ i π r 2 / ( λ 2 f / n 2 ) ] t 0 exp [ - i π r 2 / ( λ 1 f / n 1 ) ] = t 0 exp { ( i π r 2 / f ) [ ( n 2 / λ 2 ) - ( n 1 / λ 1 ) ] } .
( n 2 / λ 2 ) - ( n 1 / λ 1 ) = 1 / λ 3 ,
n 1 = 2 and n 2 = 1 , then λ 3 = 900 nm , n 1 = 2 and n 2 = 2 , then λ 3 = 1066 nm , n 1 = 1 and n 2 = 3 , then λ 3 = 219 nm .

Metrics