Abstract

We propose and demonstrate new practical methods of waveguide end fabrication and fiber attachment for Ti:LiNbO3 waveguides. We fabricated waveguide endfaces with a cutting machine, which simplifies the manufacture of waveguide devices and provides a low excess loss of 0.3 dB or less. Our proposed fiber attachment method features fibers that protrude slightly from the reinforcement. It provides easy alignment, low excess loss (<0.1 dB), high strength (>600 gf), and high thermal stability (−10 to 60°C). We also developed an easy way to reduce the backreflection from the joint without using anti-reflection coating. Instead, a tapered hemispherical end fiber and an angled waveguide endface are used. Backreflection is easily reduced to less than −30 dB.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Okiyama, I. Yokota, H. Nishimoto, T. Touge, M. Seino, N. Mekada, “10 Gb/s Transmission in Large-Dispersion Fiber Using a Ti:LiNbO3 Mach-Zehnder Modulator,” in Technical Digest, Seventh International Conference on Integrated Optics and Optical Fiber Communication, Kobe, Japan (1989), paper 20D4-5.
  2. K. Hagimoto et al., “A 10 Gb/s Long-Span Fiber Transmission Experiment Employing Optical Amplification Technique and Monolithic IC Technology,” in Postdeadline Papers, Seventh International Conference on Integrated Optics and Optical Fiber Communication, Kobe, Japan (1989), paper 20 PDA-6.
  3. M. Z. Iqbal et al., “An 11 Gb/s, 151 km Transmission Experiment Employing a 1480 nm Pumped Erbium-Doped In-Line Fiber Amplifier,” in Postdeadline Papers, Seventh International Conference on Integrated Optics and Optical Fiber Communication, Kobe, Japan (1989), paper 20 PDA-7.
  4. H. Nishimoto et al., “Transmission of 12 Gb/s Over 100 km Using an LD-Pumped Erbium-Doped Fiber Amplifier and a Ti:LiNbO3 Mach-Zehnder Modulator,” in Postdeadline Papers, Seventh International Conference on Integrated Optics and Optical Fiber Communication, Kobe, Japan (1989), paper 20 PDA-8.
  5. H. P. Hsu, A. F. Milton, “Flip-Chip Approach to End Fire Coupling Between Single-Mode Fibers and Channel Waveguides,” Electron. Lett. 12, 404–405 (1976).
    [CrossRef]
  6. H. P. Hsu, A. F. Milton, W. K. Burns, “Multiple Fiber End Fire Coupling with Single-Mode Channel Waveguides,” Appl. Phys. Lett. 33, 603–605 (1987).
    [CrossRef]
  7. C. H. Bulmer, S. K. Sheem, R. P. Moeller, W. K. Burns, “High-Efficiency Flip-Chip Coupling Between Single-Mode Fibers and LiNbO3 Channel Waveguides,” Appl. Phys. Lett. 37, 351–353 (1980).
    [CrossRef]
  8. O. G. Ramer, C. Nelson, C. Mohr, “Experimental Integrated Optic Circuit Losses and Fiber Pigtailing of Chips,” IEEE J. Quantum Electron. QE-17, 970–974 (1981).
    [CrossRef]
  9. A. C. G. Nutt, J. P. G. Bristow, A. McDonach, P. J. R. Laybourn, “Fiber-to-Waveguide Coupling Using Ion-Milled Grooves in Lithium Niobate at 1.3-μm Wavelength,” Opt. Lett. 9, 463–465 (1984).
    [CrossRef] [PubMed]
  10. K. H. Cameron, “Simple and Practical Technique for Attaching Single-Mode Fibers to Lithium Niobate Waveguides,” Electron. Lett. 20, 974–976 (1984).
    [CrossRef]
  11. E. J. Murphy, T. C. Rice, L. McCaughan, G. T. Harvey, P. H. Read, “Permanent Attachment of Single-Mode Fiber Arrays to Waveguides,” IEEE/OSA J. Lightwave Technol. LT-3, 795–799 (1985).
    [CrossRef]
  12. E. J. Murphy, T. C. Rice, “Self-Alignment Technique for Fiber Attachment to Guided Wave Devices,” IEEE J. Quantum Electron. QE-22, 928–932 (1986).
    [CrossRef]
  13. E. J. Murphy, J. Ocenasek, C. R. Sandahl, R. J. Lisco, Y. C. Chen, “Simultaneous Single-Fiber Transmission of Video and Bidirectional Voice/Data Using LiNbO3 Guided-Wave Devices,” IEEE/OSA J. Lightwave Technol. LT-6, 937–945 (1988).
    [CrossRef]
  14. J. Watanabe, T. Saito, “Precision Machining for Microoptical Devices with Powder-Particle Collision,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1987), paper W04.
  15. N. Mekada, M. Seino, H. Nakajima, “Practical Method for Attaching Fiber to Waveguide Using Ruby Bead,” in Technical Digest, First Microoptics Conference, Tokyo (1987), paper H4.
  16. N. Mekada, M. Seino, T. Yamane, H. Nakajima, “Thermally Stabilized 1 × 4 Ti:LiNbO3 Waveguide Switch,” in Technical Digest, Topical Meeting on Integrated and Guided Wave Optics (Optical Society of America, Washington, DC, 1989), paper MAA2.
  17. M. Seino, N. Mekada, T. Namiki, H. Nakajima, “33-GHz-cm Broadband Ti:LiNbO3 Mach-Zehnder Modulator,” in Technical Digest, Fifteenth European Conference on Optical Communications, Gothenburg (1989), paper ThB22-5.
  18. R. Rao, J. S. Cook, “High Return Loss Connector Design Without Using Fibre Contact or Index Matching,” Electron. Lett. 22, 731–732 (1986).
    [CrossRef]
  19. B. E. Kincaid, “Coupling of Polarization-Maintaining Optical Fibers to Ti:LiNbO3 Waveguides with Angled Interfaces,” Opt. Lett. 13, 425–427 (1988).
    [CrossRef] [PubMed]
  20. W. J. Minford, R. DePaula, G. A. Bogert, “Interferometric Fiber Optic Gyroscope Using a Novel 3 × 3 Integrated Optic Polarizer/Splitter,” in Technical Digest, Topical Meeting on Optical Fiber Sensors (Optical Society of America, Washington, DC, 1988), paper FBB2.
  21. Y. Kubota, N. Mekada, M. Seino, H. Nakajima, “Attachment of Tapered Hemispherical-End Fiber to a Ti:LiNbO3 Mach-Zehnder Modulator with Low Insertion Loss and Small Back-Reflection,” in Technical Digest, Second Microoptics Conference-Eighth Topical Meeting on Gradient-Index Optical Imaging Systems, Tokyo (1989), paper J4.
  22. I. Sawaki, H. Nakajima, M. Seino, K. Asama, “Thermally Stabilized z-Cut Ti:LiNbO3 Waveguide Switch,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1986), paper MF2.

1988 (2)

E. J. Murphy, J. Ocenasek, C. R. Sandahl, R. J. Lisco, Y. C. Chen, “Simultaneous Single-Fiber Transmission of Video and Bidirectional Voice/Data Using LiNbO3 Guided-Wave Devices,” IEEE/OSA J. Lightwave Technol. LT-6, 937–945 (1988).
[CrossRef]

B. E. Kincaid, “Coupling of Polarization-Maintaining Optical Fibers to Ti:LiNbO3 Waveguides with Angled Interfaces,” Opt. Lett. 13, 425–427 (1988).
[CrossRef] [PubMed]

1987 (1)

H. P. Hsu, A. F. Milton, W. K. Burns, “Multiple Fiber End Fire Coupling with Single-Mode Channel Waveguides,” Appl. Phys. Lett. 33, 603–605 (1987).
[CrossRef]

1986 (2)

E. J. Murphy, T. C. Rice, “Self-Alignment Technique for Fiber Attachment to Guided Wave Devices,” IEEE J. Quantum Electron. QE-22, 928–932 (1986).
[CrossRef]

R. Rao, J. S. Cook, “High Return Loss Connector Design Without Using Fibre Contact or Index Matching,” Electron. Lett. 22, 731–732 (1986).
[CrossRef]

1985 (1)

E. J. Murphy, T. C. Rice, L. McCaughan, G. T. Harvey, P. H. Read, “Permanent Attachment of Single-Mode Fiber Arrays to Waveguides,” IEEE/OSA J. Lightwave Technol. LT-3, 795–799 (1985).
[CrossRef]

1984 (2)

A. C. G. Nutt, J. P. G. Bristow, A. McDonach, P. J. R. Laybourn, “Fiber-to-Waveguide Coupling Using Ion-Milled Grooves in Lithium Niobate at 1.3-μm Wavelength,” Opt. Lett. 9, 463–465 (1984).
[CrossRef] [PubMed]

K. H. Cameron, “Simple and Practical Technique for Attaching Single-Mode Fibers to Lithium Niobate Waveguides,” Electron. Lett. 20, 974–976 (1984).
[CrossRef]

1981 (1)

O. G. Ramer, C. Nelson, C. Mohr, “Experimental Integrated Optic Circuit Losses and Fiber Pigtailing of Chips,” IEEE J. Quantum Electron. QE-17, 970–974 (1981).
[CrossRef]

1980 (1)

C. H. Bulmer, S. K. Sheem, R. P. Moeller, W. K. Burns, “High-Efficiency Flip-Chip Coupling Between Single-Mode Fibers and LiNbO3 Channel Waveguides,” Appl. Phys. Lett. 37, 351–353 (1980).
[CrossRef]

1976 (1)

H. P. Hsu, A. F. Milton, “Flip-Chip Approach to End Fire Coupling Between Single-Mode Fibers and Channel Waveguides,” Electron. Lett. 12, 404–405 (1976).
[CrossRef]

Asama, K.

I. Sawaki, H. Nakajima, M. Seino, K. Asama, “Thermally Stabilized z-Cut Ti:LiNbO3 Waveguide Switch,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1986), paper MF2.

Bogert, G. A.

W. J. Minford, R. DePaula, G. A. Bogert, “Interferometric Fiber Optic Gyroscope Using a Novel 3 × 3 Integrated Optic Polarizer/Splitter,” in Technical Digest, Topical Meeting on Optical Fiber Sensors (Optical Society of America, Washington, DC, 1988), paper FBB2.

Bristow, J. P. G.

Bulmer, C. H.

C. H. Bulmer, S. K. Sheem, R. P. Moeller, W. K. Burns, “High-Efficiency Flip-Chip Coupling Between Single-Mode Fibers and LiNbO3 Channel Waveguides,” Appl. Phys. Lett. 37, 351–353 (1980).
[CrossRef]

Burns, W. K.

H. P. Hsu, A. F. Milton, W. K. Burns, “Multiple Fiber End Fire Coupling with Single-Mode Channel Waveguides,” Appl. Phys. Lett. 33, 603–605 (1987).
[CrossRef]

C. H. Bulmer, S. K. Sheem, R. P. Moeller, W. K. Burns, “High-Efficiency Flip-Chip Coupling Between Single-Mode Fibers and LiNbO3 Channel Waveguides,” Appl. Phys. Lett. 37, 351–353 (1980).
[CrossRef]

Cameron, K. H.

K. H. Cameron, “Simple and Practical Technique for Attaching Single-Mode Fibers to Lithium Niobate Waveguides,” Electron. Lett. 20, 974–976 (1984).
[CrossRef]

Chen, Y. C.

E. J. Murphy, J. Ocenasek, C. R. Sandahl, R. J. Lisco, Y. C. Chen, “Simultaneous Single-Fiber Transmission of Video and Bidirectional Voice/Data Using LiNbO3 Guided-Wave Devices,” IEEE/OSA J. Lightwave Technol. LT-6, 937–945 (1988).
[CrossRef]

Cook, J. S.

R. Rao, J. S. Cook, “High Return Loss Connector Design Without Using Fibre Contact or Index Matching,” Electron. Lett. 22, 731–732 (1986).
[CrossRef]

DePaula, R.

W. J. Minford, R. DePaula, G. A. Bogert, “Interferometric Fiber Optic Gyroscope Using a Novel 3 × 3 Integrated Optic Polarizer/Splitter,” in Technical Digest, Topical Meeting on Optical Fiber Sensors (Optical Society of America, Washington, DC, 1988), paper FBB2.

Hagimoto, K.

K. Hagimoto et al., “A 10 Gb/s Long-Span Fiber Transmission Experiment Employing Optical Amplification Technique and Monolithic IC Technology,” in Postdeadline Papers, Seventh International Conference on Integrated Optics and Optical Fiber Communication, Kobe, Japan (1989), paper 20 PDA-6.

Harvey, G. T.

E. J. Murphy, T. C. Rice, L. McCaughan, G. T. Harvey, P. H. Read, “Permanent Attachment of Single-Mode Fiber Arrays to Waveguides,” IEEE/OSA J. Lightwave Technol. LT-3, 795–799 (1985).
[CrossRef]

Hsu, H. P.

H. P. Hsu, A. F. Milton, W. K. Burns, “Multiple Fiber End Fire Coupling with Single-Mode Channel Waveguides,” Appl. Phys. Lett. 33, 603–605 (1987).
[CrossRef]

H. P. Hsu, A. F. Milton, “Flip-Chip Approach to End Fire Coupling Between Single-Mode Fibers and Channel Waveguides,” Electron. Lett. 12, 404–405 (1976).
[CrossRef]

Iqbal, M. Z.

M. Z. Iqbal et al., “An 11 Gb/s, 151 km Transmission Experiment Employing a 1480 nm Pumped Erbium-Doped In-Line Fiber Amplifier,” in Postdeadline Papers, Seventh International Conference on Integrated Optics and Optical Fiber Communication, Kobe, Japan (1989), paper 20 PDA-7.

Kincaid, B. E.

Kubota, Y.

Y. Kubota, N. Mekada, M. Seino, H. Nakajima, “Attachment of Tapered Hemispherical-End Fiber to a Ti:LiNbO3 Mach-Zehnder Modulator with Low Insertion Loss and Small Back-Reflection,” in Technical Digest, Second Microoptics Conference-Eighth Topical Meeting on Gradient-Index Optical Imaging Systems, Tokyo (1989), paper J4.

Laybourn, P. J. R.

Lisco, R. J.

E. J. Murphy, J. Ocenasek, C. R. Sandahl, R. J. Lisco, Y. C. Chen, “Simultaneous Single-Fiber Transmission of Video and Bidirectional Voice/Data Using LiNbO3 Guided-Wave Devices,” IEEE/OSA J. Lightwave Technol. LT-6, 937–945 (1988).
[CrossRef]

McCaughan, L.

E. J. Murphy, T. C. Rice, L. McCaughan, G. T. Harvey, P. H. Read, “Permanent Attachment of Single-Mode Fiber Arrays to Waveguides,” IEEE/OSA J. Lightwave Technol. LT-3, 795–799 (1985).
[CrossRef]

McDonach, A.

Mekada, N.

T. Okiyama, I. Yokota, H. Nishimoto, T. Touge, M. Seino, N. Mekada, “10 Gb/s Transmission in Large-Dispersion Fiber Using a Ti:LiNbO3 Mach-Zehnder Modulator,” in Technical Digest, Seventh International Conference on Integrated Optics and Optical Fiber Communication, Kobe, Japan (1989), paper 20D4-5.

N. Mekada, M. Seino, H. Nakajima, “Practical Method for Attaching Fiber to Waveguide Using Ruby Bead,” in Technical Digest, First Microoptics Conference, Tokyo (1987), paper H4.

N. Mekada, M. Seino, T. Yamane, H. Nakajima, “Thermally Stabilized 1 × 4 Ti:LiNbO3 Waveguide Switch,” in Technical Digest, Topical Meeting on Integrated and Guided Wave Optics (Optical Society of America, Washington, DC, 1989), paper MAA2.

M. Seino, N. Mekada, T. Namiki, H. Nakajima, “33-GHz-cm Broadband Ti:LiNbO3 Mach-Zehnder Modulator,” in Technical Digest, Fifteenth European Conference on Optical Communications, Gothenburg (1989), paper ThB22-5.

Y. Kubota, N. Mekada, M. Seino, H. Nakajima, “Attachment of Tapered Hemispherical-End Fiber to a Ti:LiNbO3 Mach-Zehnder Modulator with Low Insertion Loss and Small Back-Reflection,” in Technical Digest, Second Microoptics Conference-Eighth Topical Meeting on Gradient-Index Optical Imaging Systems, Tokyo (1989), paper J4.

Milton, A. F.

H. P. Hsu, A. F. Milton, W. K. Burns, “Multiple Fiber End Fire Coupling with Single-Mode Channel Waveguides,” Appl. Phys. Lett. 33, 603–605 (1987).
[CrossRef]

H. P. Hsu, A. F. Milton, “Flip-Chip Approach to End Fire Coupling Between Single-Mode Fibers and Channel Waveguides,” Electron. Lett. 12, 404–405 (1976).
[CrossRef]

Minford, W. J.

W. J. Minford, R. DePaula, G. A. Bogert, “Interferometric Fiber Optic Gyroscope Using a Novel 3 × 3 Integrated Optic Polarizer/Splitter,” in Technical Digest, Topical Meeting on Optical Fiber Sensors (Optical Society of America, Washington, DC, 1988), paper FBB2.

Moeller, R. P.

C. H. Bulmer, S. K. Sheem, R. P. Moeller, W. K. Burns, “High-Efficiency Flip-Chip Coupling Between Single-Mode Fibers and LiNbO3 Channel Waveguides,” Appl. Phys. Lett. 37, 351–353 (1980).
[CrossRef]

Mohr, C.

O. G. Ramer, C. Nelson, C. Mohr, “Experimental Integrated Optic Circuit Losses and Fiber Pigtailing of Chips,” IEEE J. Quantum Electron. QE-17, 970–974 (1981).
[CrossRef]

Murphy, E. J.

E. J. Murphy, J. Ocenasek, C. R. Sandahl, R. J. Lisco, Y. C. Chen, “Simultaneous Single-Fiber Transmission of Video and Bidirectional Voice/Data Using LiNbO3 Guided-Wave Devices,” IEEE/OSA J. Lightwave Technol. LT-6, 937–945 (1988).
[CrossRef]

E. J. Murphy, T. C. Rice, “Self-Alignment Technique for Fiber Attachment to Guided Wave Devices,” IEEE J. Quantum Electron. QE-22, 928–932 (1986).
[CrossRef]

E. J. Murphy, T. C. Rice, L. McCaughan, G. T. Harvey, P. H. Read, “Permanent Attachment of Single-Mode Fiber Arrays to Waveguides,” IEEE/OSA J. Lightwave Technol. LT-3, 795–799 (1985).
[CrossRef]

Nakajima, H.

Y. Kubota, N. Mekada, M. Seino, H. Nakajima, “Attachment of Tapered Hemispherical-End Fiber to a Ti:LiNbO3 Mach-Zehnder Modulator with Low Insertion Loss and Small Back-Reflection,” in Technical Digest, Second Microoptics Conference-Eighth Topical Meeting on Gradient-Index Optical Imaging Systems, Tokyo (1989), paper J4.

I. Sawaki, H. Nakajima, M. Seino, K. Asama, “Thermally Stabilized z-Cut Ti:LiNbO3 Waveguide Switch,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1986), paper MF2.

M. Seino, N. Mekada, T. Namiki, H. Nakajima, “33-GHz-cm Broadband Ti:LiNbO3 Mach-Zehnder Modulator,” in Technical Digest, Fifteenth European Conference on Optical Communications, Gothenburg (1989), paper ThB22-5.

N. Mekada, M. Seino, T. Yamane, H. Nakajima, “Thermally Stabilized 1 × 4 Ti:LiNbO3 Waveguide Switch,” in Technical Digest, Topical Meeting on Integrated and Guided Wave Optics (Optical Society of America, Washington, DC, 1989), paper MAA2.

N. Mekada, M. Seino, H. Nakajima, “Practical Method for Attaching Fiber to Waveguide Using Ruby Bead,” in Technical Digest, First Microoptics Conference, Tokyo (1987), paper H4.

Namiki, T.

M. Seino, N. Mekada, T. Namiki, H. Nakajima, “33-GHz-cm Broadband Ti:LiNbO3 Mach-Zehnder Modulator,” in Technical Digest, Fifteenth European Conference on Optical Communications, Gothenburg (1989), paper ThB22-5.

Nelson, C.

O. G. Ramer, C. Nelson, C. Mohr, “Experimental Integrated Optic Circuit Losses and Fiber Pigtailing of Chips,” IEEE J. Quantum Electron. QE-17, 970–974 (1981).
[CrossRef]

Nishimoto, H.

H. Nishimoto et al., “Transmission of 12 Gb/s Over 100 km Using an LD-Pumped Erbium-Doped Fiber Amplifier and a Ti:LiNbO3 Mach-Zehnder Modulator,” in Postdeadline Papers, Seventh International Conference on Integrated Optics and Optical Fiber Communication, Kobe, Japan (1989), paper 20 PDA-8.

T. Okiyama, I. Yokota, H. Nishimoto, T. Touge, M. Seino, N. Mekada, “10 Gb/s Transmission in Large-Dispersion Fiber Using a Ti:LiNbO3 Mach-Zehnder Modulator,” in Technical Digest, Seventh International Conference on Integrated Optics and Optical Fiber Communication, Kobe, Japan (1989), paper 20D4-5.

Nutt, A. C. G.

Ocenasek, J.

E. J. Murphy, J. Ocenasek, C. R. Sandahl, R. J. Lisco, Y. C. Chen, “Simultaneous Single-Fiber Transmission of Video and Bidirectional Voice/Data Using LiNbO3 Guided-Wave Devices,” IEEE/OSA J. Lightwave Technol. LT-6, 937–945 (1988).
[CrossRef]

Okiyama, T.

T. Okiyama, I. Yokota, H. Nishimoto, T. Touge, M. Seino, N. Mekada, “10 Gb/s Transmission in Large-Dispersion Fiber Using a Ti:LiNbO3 Mach-Zehnder Modulator,” in Technical Digest, Seventh International Conference on Integrated Optics and Optical Fiber Communication, Kobe, Japan (1989), paper 20D4-5.

Ramer, O. G.

O. G. Ramer, C. Nelson, C. Mohr, “Experimental Integrated Optic Circuit Losses and Fiber Pigtailing of Chips,” IEEE J. Quantum Electron. QE-17, 970–974 (1981).
[CrossRef]

Rao, R.

R. Rao, J. S. Cook, “High Return Loss Connector Design Without Using Fibre Contact or Index Matching,” Electron. Lett. 22, 731–732 (1986).
[CrossRef]

Read, P. H.

E. J. Murphy, T. C. Rice, L. McCaughan, G. T. Harvey, P. H. Read, “Permanent Attachment of Single-Mode Fiber Arrays to Waveguides,” IEEE/OSA J. Lightwave Technol. LT-3, 795–799 (1985).
[CrossRef]

Rice, T. C.

E. J. Murphy, T. C. Rice, “Self-Alignment Technique for Fiber Attachment to Guided Wave Devices,” IEEE J. Quantum Electron. QE-22, 928–932 (1986).
[CrossRef]

E. J. Murphy, T. C. Rice, L. McCaughan, G. T. Harvey, P. H. Read, “Permanent Attachment of Single-Mode Fiber Arrays to Waveguides,” IEEE/OSA J. Lightwave Technol. LT-3, 795–799 (1985).
[CrossRef]

Saito, T.

J. Watanabe, T. Saito, “Precision Machining for Microoptical Devices with Powder-Particle Collision,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1987), paper W04.

Sandahl, C. R.

E. J. Murphy, J. Ocenasek, C. R. Sandahl, R. J. Lisco, Y. C. Chen, “Simultaneous Single-Fiber Transmission of Video and Bidirectional Voice/Data Using LiNbO3 Guided-Wave Devices,” IEEE/OSA J. Lightwave Technol. LT-6, 937–945 (1988).
[CrossRef]

Sawaki, I.

I. Sawaki, H. Nakajima, M. Seino, K. Asama, “Thermally Stabilized z-Cut Ti:LiNbO3 Waveguide Switch,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1986), paper MF2.

Seino, M.

Y. Kubota, N. Mekada, M. Seino, H. Nakajima, “Attachment of Tapered Hemispherical-End Fiber to a Ti:LiNbO3 Mach-Zehnder Modulator with Low Insertion Loss and Small Back-Reflection,” in Technical Digest, Second Microoptics Conference-Eighth Topical Meeting on Gradient-Index Optical Imaging Systems, Tokyo (1989), paper J4.

I. Sawaki, H. Nakajima, M. Seino, K. Asama, “Thermally Stabilized z-Cut Ti:LiNbO3 Waveguide Switch,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1986), paper MF2.

N. Mekada, M. Seino, H. Nakajima, “Practical Method for Attaching Fiber to Waveguide Using Ruby Bead,” in Technical Digest, First Microoptics Conference, Tokyo (1987), paper H4.

M. Seino, N. Mekada, T. Namiki, H. Nakajima, “33-GHz-cm Broadband Ti:LiNbO3 Mach-Zehnder Modulator,” in Technical Digest, Fifteenth European Conference on Optical Communications, Gothenburg (1989), paper ThB22-5.

N. Mekada, M. Seino, T. Yamane, H. Nakajima, “Thermally Stabilized 1 × 4 Ti:LiNbO3 Waveguide Switch,” in Technical Digest, Topical Meeting on Integrated and Guided Wave Optics (Optical Society of America, Washington, DC, 1989), paper MAA2.

T. Okiyama, I. Yokota, H. Nishimoto, T. Touge, M. Seino, N. Mekada, “10 Gb/s Transmission in Large-Dispersion Fiber Using a Ti:LiNbO3 Mach-Zehnder Modulator,” in Technical Digest, Seventh International Conference on Integrated Optics and Optical Fiber Communication, Kobe, Japan (1989), paper 20D4-5.

Sheem, S. K.

C. H. Bulmer, S. K. Sheem, R. P. Moeller, W. K. Burns, “High-Efficiency Flip-Chip Coupling Between Single-Mode Fibers and LiNbO3 Channel Waveguides,” Appl. Phys. Lett. 37, 351–353 (1980).
[CrossRef]

Touge, T.

T. Okiyama, I. Yokota, H. Nishimoto, T. Touge, M. Seino, N. Mekada, “10 Gb/s Transmission in Large-Dispersion Fiber Using a Ti:LiNbO3 Mach-Zehnder Modulator,” in Technical Digest, Seventh International Conference on Integrated Optics and Optical Fiber Communication, Kobe, Japan (1989), paper 20D4-5.

Watanabe, J.

J. Watanabe, T. Saito, “Precision Machining for Microoptical Devices with Powder-Particle Collision,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1987), paper W04.

Yamane, T.

N. Mekada, M. Seino, T. Yamane, H. Nakajima, “Thermally Stabilized 1 × 4 Ti:LiNbO3 Waveguide Switch,” in Technical Digest, Topical Meeting on Integrated and Guided Wave Optics (Optical Society of America, Washington, DC, 1989), paper MAA2.

Yokota, I.

T. Okiyama, I. Yokota, H. Nishimoto, T. Touge, M. Seino, N. Mekada, “10 Gb/s Transmission in Large-Dispersion Fiber Using a Ti:LiNbO3 Mach-Zehnder Modulator,” in Technical Digest, Seventh International Conference on Integrated Optics and Optical Fiber Communication, Kobe, Japan (1989), paper 20D4-5.

Appl. Phys. Lett. (2)

H. P. Hsu, A. F. Milton, W. K. Burns, “Multiple Fiber End Fire Coupling with Single-Mode Channel Waveguides,” Appl. Phys. Lett. 33, 603–605 (1987).
[CrossRef]

C. H. Bulmer, S. K. Sheem, R. P. Moeller, W. K. Burns, “High-Efficiency Flip-Chip Coupling Between Single-Mode Fibers and LiNbO3 Channel Waveguides,” Appl. Phys. Lett. 37, 351–353 (1980).
[CrossRef]

Electron. Lett. (3)

R. Rao, J. S. Cook, “High Return Loss Connector Design Without Using Fibre Contact or Index Matching,” Electron. Lett. 22, 731–732 (1986).
[CrossRef]

K. H. Cameron, “Simple and Practical Technique for Attaching Single-Mode Fibers to Lithium Niobate Waveguides,” Electron. Lett. 20, 974–976 (1984).
[CrossRef]

H. P. Hsu, A. F. Milton, “Flip-Chip Approach to End Fire Coupling Between Single-Mode Fibers and Channel Waveguides,” Electron. Lett. 12, 404–405 (1976).
[CrossRef]

IEEE J. Quantum Electron. (2)

E. J. Murphy, T. C. Rice, “Self-Alignment Technique for Fiber Attachment to Guided Wave Devices,” IEEE J. Quantum Electron. QE-22, 928–932 (1986).
[CrossRef]

O. G. Ramer, C. Nelson, C. Mohr, “Experimental Integrated Optic Circuit Losses and Fiber Pigtailing of Chips,” IEEE J. Quantum Electron. QE-17, 970–974 (1981).
[CrossRef]

IEEE/OSA J. Lightwave Technol. (2)

E. J. Murphy, J. Ocenasek, C. R. Sandahl, R. J. Lisco, Y. C. Chen, “Simultaneous Single-Fiber Transmission of Video and Bidirectional Voice/Data Using LiNbO3 Guided-Wave Devices,” IEEE/OSA J. Lightwave Technol. LT-6, 937–945 (1988).
[CrossRef]

E. J. Murphy, T. C. Rice, L. McCaughan, G. T. Harvey, P. H. Read, “Permanent Attachment of Single-Mode Fiber Arrays to Waveguides,” IEEE/OSA J. Lightwave Technol. LT-3, 795–799 (1985).
[CrossRef]

Opt. Lett. (2)

Other (11)

T. Okiyama, I. Yokota, H. Nishimoto, T. Touge, M. Seino, N. Mekada, “10 Gb/s Transmission in Large-Dispersion Fiber Using a Ti:LiNbO3 Mach-Zehnder Modulator,” in Technical Digest, Seventh International Conference on Integrated Optics and Optical Fiber Communication, Kobe, Japan (1989), paper 20D4-5.

K. Hagimoto et al., “A 10 Gb/s Long-Span Fiber Transmission Experiment Employing Optical Amplification Technique and Monolithic IC Technology,” in Postdeadline Papers, Seventh International Conference on Integrated Optics and Optical Fiber Communication, Kobe, Japan (1989), paper 20 PDA-6.

M. Z. Iqbal et al., “An 11 Gb/s, 151 km Transmission Experiment Employing a 1480 nm Pumped Erbium-Doped In-Line Fiber Amplifier,” in Postdeadline Papers, Seventh International Conference on Integrated Optics and Optical Fiber Communication, Kobe, Japan (1989), paper 20 PDA-7.

H. Nishimoto et al., “Transmission of 12 Gb/s Over 100 km Using an LD-Pumped Erbium-Doped Fiber Amplifier and a Ti:LiNbO3 Mach-Zehnder Modulator,” in Postdeadline Papers, Seventh International Conference on Integrated Optics and Optical Fiber Communication, Kobe, Japan (1989), paper 20 PDA-8.

W. J. Minford, R. DePaula, G. A. Bogert, “Interferometric Fiber Optic Gyroscope Using a Novel 3 × 3 Integrated Optic Polarizer/Splitter,” in Technical Digest, Topical Meeting on Optical Fiber Sensors (Optical Society of America, Washington, DC, 1988), paper FBB2.

Y. Kubota, N. Mekada, M. Seino, H. Nakajima, “Attachment of Tapered Hemispherical-End Fiber to a Ti:LiNbO3 Mach-Zehnder Modulator with Low Insertion Loss and Small Back-Reflection,” in Technical Digest, Second Microoptics Conference-Eighth Topical Meeting on Gradient-Index Optical Imaging Systems, Tokyo (1989), paper J4.

I. Sawaki, H. Nakajima, M. Seino, K. Asama, “Thermally Stabilized z-Cut Ti:LiNbO3 Waveguide Switch,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1986), paper MF2.

J. Watanabe, T. Saito, “Precision Machining for Microoptical Devices with Powder-Particle Collision,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1987), paper W04.

N. Mekada, M. Seino, H. Nakajima, “Practical Method for Attaching Fiber to Waveguide Using Ruby Bead,” in Technical Digest, First Microoptics Conference, Tokyo (1987), paper H4.

N. Mekada, M. Seino, T. Yamane, H. Nakajima, “Thermally Stabilized 1 × 4 Ti:LiNbO3 Waveguide Switch,” in Technical Digest, Topical Meeting on Integrated and Guided Wave Optics (Optical Society of America, Washington, DC, 1989), paper MAA2.

M. Seino, N. Mekada, T. Namiki, H. Nakajima, “33-GHz-cm Broadband Ti:LiNbO3 Mach-Zehnder Modulator,” in Technical Digest, Fifteenth European Conference on Optical Communications, Gothenburg (1989), paper ThB22-5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Waveguide end fabrication using cutting machine.

Fig. 2
Fig. 2

Photographs of waveguide endfaces: (a) cut face; (b) polished face.

Fig. 3
Fig. 3

Histogram of excess loss of cut faces.

Fig. 4
Fig. 4

Fundamental structure of joint.

Fig. 5
Fig. 5

Schematic diagram of ruby bead and joint using a ruby bead: (a) ruby bead; (b) joint with ruby bead.

Fig. 6
Fig. 6

Temperature characteristics of insertion loss.

Fig. 7
Fig. 7

Maximum and minimum losses during temperature cycling.

Fig. 8
Fig. 8

Loss deviation vs tension.

Fig. 9
Fig. 9

Structure of fiber array.

Fig. 10
Fig. 10

Fiber array endface.

Fig. 11
Fig. 11

Temperature characteristics of the insertion loss of a 1 × 4 optical switch.

Fig. 12
Fig. 12

Coupling configurations of fiber ends to angled waveguide endfaces: (a) cleaved end; (b) tapered hemispherical end.

Fig. 13
Fig. 13

Schematic diagram of a tapered hemispherical end fiber attachment to an angled waveguide endface using a ruby bead.

Fig. 14
Fig. 14

Backreflection and excess loss vs θ.

Fig. 15
Fig. 15

Temperature characteristics of sample with θ = 3°.

Metrics