Abstract

A MgO/Ti bilaterally diffused optical waveguide is proposed. It features controlling the waveguide spot size and strengthening the optical confinement. It is experimentally shown that the coupling loss with single-mode fiber is reduced to 0.6 dB/facet. The bending loss is also suppressed from 2.2 dB of the Ti diffused waveguide to 0.2 dB at a 30-mm bending radius. The performance of the switch using this method is demonstrated. Total insertion loss is 2.6 dB. Driving voltage is 5.6 V with no degradation of the EO effect.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Kaminow, “Metal Diffused Optical Waveguide,” Appl. Phys. Lett. 25, 458–460 (1974).
    [CrossRef]
  2. R. Chen, C. S. Tsai, “Thermally Annealed Single-Mode Proton-Exchanged Channel-Waveguide Cutoff Modulator,” Opt. Lett. 11, 546–548 (1986).
    [CrossRef] [PubMed]
  3. S. K. Korotky, E. A. J. Marcatili, J. J. Veselka, R. H. Bosworth, “Greatly Reduced Losses for Small-Radius Bends in Ti:LiNbO3 Waveguides,” Appl. Phys. Lett. 48, 92–94 (1986).
    [CrossRef]
  4. K. Komatsu, S. Yamazaki, M. Kondo, Y. Ohta, “Low-Loss Broad-Band LiNbO3 Guided-Wave Phase Modulators Using Titanium/Magnesium Double Diffusion Method,” IEEE/OSA J. Lightwave Technol. LT-5, 1239–1245 (1987).
    [CrossRef]
  5. R. Keil, F. Aurachher, “Coupling of Single Mode Ti-Diffused LiNbO3 Waveguides to Single-Mode Fibers,” Opt. Commun. 30, 23–28 (1978).
    [CrossRef]
  6. J. Noda, M. Fukuma, Y. Ito, “Phase Matching Temperature Variation of Second-Harmonic Generation in Li Out-Diffused LiNbO3 Layers,” J. Appl. Phys. 51, 1379 (1980).
    [CrossRef]
  7. J. Noda, M. Fukura, S. Saito, “Effect of Mg Diffusion on Ti-Diffused LiNbO3 Waveguides,” J. Appl. Phys. 49, 3150 (1978).
    [CrossRef]

1987 (1)

K. Komatsu, S. Yamazaki, M. Kondo, Y. Ohta, “Low-Loss Broad-Band LiNbO3 Guided-Wave Phase Modulators Using Titanium/Magnesium Double Diffusion Method,” IEEE/OSA J. Lightwave Technol. LT-5, 1239–1245 (1987).
[CrossRef]

1986 (2)

S. K. Korotky, E. A. J. Marcatili, J. J. Veselka, R. H. Bosworth, “Greatly Reduced Losses for Small-Radius Bends in Ti:LiNbO3 Waveguides,” Appl. Phys. Lett. 48, 92–94 (1986).
[CrossRef]

R. Chen, C. S. Tsai, “Thermally Annealed Single-Mode Proton-Exchanged Channel-Waveguide Cutoff Modulator,” Opt. Lett. 11, 546–548 (1986).
[CrossRef] [PubMed]

1980 (1)

J. Noda, M. Fukuma, Y. Ito, “Phase Matching Temperature Variation of Second-Harmonic Generation in Li Out-Diffused LiNbO3 Layers,” J. Appl. Phys. 51, 1379 (1980).
[CrossRef]

1978 (2)

J. Noda, M. Fukura, S. Saito, “Effect of Mg Diffusion on Ti-Diffused LiNbO3 Waveguides,” J. Appl. Phys. 49, 3150 (1978).
[CrossRef]

R. Keil, F. Aurachher, “Coupling of Single Mode Ti-Diffused LiNbO3 Waveguides to Single-Mode Fibers,” Opt. Commun. 30, 23–28 (1978).
[CrossRef]

1974 (1)

I. Kaminow, “Metal Diffused Optical Waveguide,” Appl. Phys. Lett. 25, 458–460 (1974).
[CrossRef]

Aurachher, F.

R. Keil, F. Aurachher, “Coupling of Single Mode Ti-Diffused LiNbO3 Waveguides to Single-Mode Fibers,” Opt. Commun. 30, 23–28 (1978).
[CrossRef]

Bosworth, R. H.

S. K. Korotky, E. A. J. Marcatili, J. J. Veselka, R. H. Bosworth, “Greatly Reduced Losses for Small-Radius Bends in Ti:LiNbO3 Waveguides,” Appl. Phys. Lett. 48, 92–94 (1986).
[CrossRef]

Chen, R.

Fukuma, M.

J. Noda, M. Fukuma, Y. Ito, “Phase Matching Temperature Variation of Second-Harmonic Generation in Li Out-Diffused LiNbO3 Layers,” J. Appl. Phys. 51, 1379 (1980).
[CrossRef]

Fukura, M.

J. Noda, M. Fukura, S. Saito, “Effect of Mg Diffusion on Ti-Diffused LiNbO3 Waveguides,” J. Appl. Phys. 49, 3150 (1978).
[CrossRef]

Ito, Y.

J. Noda, M. Fukuma, Y. Ito, “Phase Matching Temperature Variation of Second-Harmonic Generation in Li Out-Diffused LiNbO3 Layers,” J. Appl. Phys. 51, 1379 (1980).
[CrossRef]

Kaminow, I.

I. Kaminow, “Metal Diffused Optical Waveguide,” Appl. Phys. Lett. 25, 458–460 (1974).
[CrossRef]

Keil, R.

R. Keil, F. Aurachher, “Coupling of Single Mode Ti-Diffused LiNbO3 Waveguides to Single-Mode Fibers,” Opt. Commun. 30, 23–28 (1978).
[CrossRef]

Komatsu, K.

K. Komatsu, S. Yamazaki, M. Kondo, Y. Ohta, “Low-Loss Broad-Band LiNbO3 Guided-Wave Phase Modulators Using Titanium/Magnesium Double Diffusion Method,” IEEE/OSA J. Lightwave Technol. LT-5, 1239–1245 (1987).
[CrossRef]

Kondo, M.

K. Komatsu, S. Yamazaki, M. Kondo, Y. Ohta, “Low-Loss Broad-Band LiNbO3 Guided-Wave Phase Modulators Using Titanium/Magnesium Double Diffusion Method,” IEEE/OSA J. Lightwave Technol. LT-5, 1239–1245 (1987).
[CrossRef]

Korotky, S. K.

S. K. Korotky, E. A. J. Marcatili, J. J. Veselka, R. H. Bosworth, “Greatly Reduced Losses for Small-Radius Bends in Ti:LiNbO3 Waveguides,” Appl. Phys. Lett. 48, 92–94 (1986).
[CrossRef]

Marcatili, E. A. J.

S. K. Korotky, E. A. J. Marcatili, J. J. Veselka, R. H. Bosworth, “Greatly Reduced Losses for Small-Radius Bends in Ti:LiNbO3 Waveguides,” Appl. Phys. Lett. 48, 92–94 (1986).
[CrossRef]

Noda, J.

J. Noda, M. Fukuma, Y. Ito, “Phase Matching Temperature Variation of Second-Harmonic Generation in Li Out-Diffused LiNbO3 Layers,” J. Appl. Phys. 51, 1379 (1980).
[CrossRef]

J. Noda, M. Fukura, S. Saito, “Effect of Mg Diffusion on Ti-Diffused LiNbO3 Waveguides,” J. Appl. Phys. 49, 3150 (1978).
[CrossRef]

Ohta, Y.

K. Komatsu, S. Yamazaki, M. Kondo, Y. Ohta, “Low-Loss Broad-Band LiNbO3 Guided-Wave Phase Modulators Using Titanium/Magnesium Double Diffusion Method,” IEEE/OSA J. Lightwave Technol. LT-5, 1239–1245 (1987).
[CrossRef]

Saito, S.

J. Noda, M. Fukura, S. Saito, “Effect of Mg Diffusion on Ti-Diffused LiNbO3 Waveguides,” J. Appl. Phys. 49, 3150 (1978).
[CrossRef]

Tsai, C. S.

Veselka, J. J.

S. K. Korotky, E. A. J. Marcatili, J. J. Veselka, R. H. Bosworth, “Greatly Reduced Losses for Small-Radius Bends in Ti:LiNbO3 Waveguides,” Appl. Phys. Lett. 48, 92–94 (1986).
[CrossRef]

Yamazaki, S.

K. Komatsu, S. Yamazaki, M. Kondo, Y. Ohta, “Low-Loss Broad-Band LiNbO3 Guided-Wave Phase Modulators Using Titanium/Magnesium Double Diffusion Method,” IEEE/OSA J. Lightwave Technol. LT-5, 1239–1245 (1987).
[CrossRef]

Appl. Phys. Lett. (2)

S. K. Korotky, E. A. J. Marcatili, J. J. Veselka, R. H. Bosworth, “Greatly Reduced Losses for Small-Radius Bends in Ti:LiNbO3 Waveguides,” Appl. Phys. Lett. 48, 92–94 (1986).
[CrossRef]

I. Kaminow, “Metal Diffused Optical Waveguide,” Appl. Phys. Lett. 25, 458–460 (1974).
[CrossRef]

IEEE/OSA J. Lightwave Technol. (1)

K. Komatsu, S. Yamazaki, M. Kondo, Y. Ohta, “Low-Loss Broad-Band LiNbO3 Guided-Wave Phase Modulators Using Titanium/Magnesium Double Diffusion Method,” IEEE/OSA J. Lightwave Technol. LT-5, 1239–1245 (1987).
[CrossRef]

J. Appl. Phys. (2)

J. Noda, M. Fukuma, Y. Ito, “Phase Matching Temperature Variation of Second-Harmonic Generation in Li Out-Diffused LiNbO3 Layers,” J. Appl. Phys. 51, 1379 (1980).
[CrossRef]

J. Noda, M. Fukura, S. Saito, “Effect of Mg Diffusion on Ti-Diffused LiNbO3 Waveguides,” J. Appl. Phys. 49, 3150 (1978).
[CrossRef]

Opt. Commun. (1)

R. Keil, F. Aurachher, “Coupling of Single Mode Ti-Diffused LiNbO3 Waveguides to Single-Mode Fibers,” Opt. Commun. 30, 23–28 (1978).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Near field pattern (NFP) of a Ti diffused waveguide with different diffusion times.

Fig. 2
Fig. 2

Dependence of aspect ratio (dx/dy) on diffusion time.

Fig. 3
Fig. 3

Comparison of the spot of a Ti:LN bending waveguide with that of the straight.

Fig. 4
Fig. 4

MgO/Ti bilateral diffusion process.

Fig. 5
Fig. 5

Distribution of Ti, Nb, and Mg in the waveguide layer obtained by SIMS.

Fig. 6
Fig. 6

Distribution of Ti, Nb, and Mg in the cladding layer obtained by SIMS.

Fig. 7
Fig. 7

Dependence of the spot size (dx/dy) on the thickness of MgO film.

Fig. 8
Fig. 8

NFP of the MgO/Ti diffused waveguide.

Fig. 9
Fig. 9

Comparison of the spot of a MgO/Ti diffused bending waveguide with that of the straight.

Fig. 10
Fig. 10

Bending loss with and without MgO diffusion.

Fig. 11
Fig. 11

Transmission of the optical power of the MgO/Ti:LN directional coupler.

Fig. 12
Fig. 12

Relationship between coupling length and the spot size of MgO/Ti diffused switches.

Fig. 13
Fig. 13

Schematics of a 2 × 2 MgO/Ti diffused switch.

Fig. 14
Fig. 14

Output power vs applied voltage.

Tables (1)

Tables Icon

Table I Total Insertion Loss Between Single-Mode Fibers for a MgO/TI Bilaterally Diffused Switch

Metrics