Abstract

The chemical composition of a (SiO2)x(Si3N4)1−x film produced by ion beam sputtering was precisely controlled by the ratio of O2 and N2 flow rates under a discharge current kept constant to within an accuracy of ±0.05 A. The reproducibility of the refractive index was improved to ±0.01. This film was applied to form antireflection coatings with extremely low reflectivity on facets of 830-nm AlGaAs double heterostructure lasers. The minimum reflectivity was 6.8 × 10−5, and a reflectivity of 1 × 10−4 was achieved reproducibly. Experimental studies show that antireflection coatings are effective for suppressing the interferometric light output variation of composite cavity lasers.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Ukita, Y. Katagiri, S. Fujimori, “Supersmall Flying Optical Head for Phase Change Recording Media,” Appl. Opt. 28, 4360–4365 (1989).
    [CrossRef] [PubMed]
  2. G. Eisenstein, “Theoretical Design of Single-Layer Antireflection Coatings on Laser Facets,” AT&T Bell Lab. Tech. J. 63, 357–364 (1984).
  3. T. Saitoh, T. Mukai, Y. Noguchi, “Fabrication and Gain Characteristics of a 1.5 μm GaInAsP Travelling-Wave Optical Amplifier,” in Technical Digest, First Optoelectronics Conference, Tokyo (1986), B11-2, 12–13.
  4. G. Eisenstein, L. W. Stulz, “High Quality Antireflection Coatings on Laser Facets by Sputtered Silicon Nitride,” Appl. Opt. 23, 161–164 (1984).
    [CrossRef] [PubMed]
  5. J. Simon, B. Landousies, C. Vassallo, “Polarization Characteristics of Very Low Reflectivity Coatings for Semiconductor Laser Amplifiers,” in Technical Digest, Twelfth European Conference on Optical Communication, Barcelona (1986), Vol. 1, pp. 249–252.
  6. T. Saitoh, T. Mukai, O. Mikami, “Theoretical Analysis and Fabrication of Antireflection Coatings on Laser-Diode Facets,” IEEE/OSA J. Lightwave Technol. LT-3, 288–293 (1985).
    [CrossRef]
  7. N. Olsson, M. Oberg, L. Tzeng, T. Cella, “Ultra-Low Reflectivity 1.5 μm Semiconductor Laser Preamplifier,” Electron. Lett. 24, 569–570 (1988).
    [CrossRef]
  8. J. Harper, J. Cuomo, H. Kaufman, “Technology and Applications of Broad-Beam Ion Source Used in Sputtering—Part II. Applications,” J. Vac. Sci. Technol. 21, 737–756 (1982).
    [CrossRef]
  9. Tien-Peilee, C. Burrus, B. Miller, “A Stripe-Geometry Double-Heterostructure Amplified-Spontaneous-Emission (Superluminescent) Diode,” IEEE J. Quantum Electron. QE-9, 820–828 (1973).
    [CrossRef]
  10. D. Schalch, A. Scharmann, R. Wolfrat, “The Role of Hydrogen in Silicon Nitride and Silicon Oxynitride Films,” Thin Solid Films 124, 301–308 (1984).
    [CrossRef]
  11. H. Kondo, T. Mizoguchi, “Internal Stress in IBS Films,” Mater. Sci. Eng. 98, 519–522 (1988).
    [CrossRef]
  12. I. Kaminow, G. Eisenstein, L. Stulz, “Measurement of the Modal Reflectivity of an Antireflection Coating on a Superluminescent Diode,” IEEE J. Quantum Electron. QE-19, 493–495 (1983).
    [CrossRef]
  13. Y. Katagiri, H. Ukita, “Improvement in Signal-to-Noise Ratio of Longitudinally-Coupled-Cavity Laser by Internal Facet Reflectivity Reduction,” Jpn. J. Appl. Phys. 28, Suppl. 28-3, 177–182 (1989).

1989

Y. Katagiri, H. Ukita, “Improvement in Signal-to-Noise Ratio of Longitudinally-Coupled-Cavity Laser by Internal Facet Reflectivity Reduction,” Jpn. J. Appl. Phys. 28, Suppl. 28-3, 177–182 (1989).

H. Ukita, Y. Katagiri, S. Fujimori, “Supersmall Flying Optical Head for Phase Change Recording Media,” Appl. Opt. 28, 4360–4365 (1989).
[CrossRef] [PubMed]

1988

H. Kondo, T. Mizoguchi, “Internal Stress in IBS Films,” Mater. Sci. Eng. 98, 519–522 (1988).
[CrossRef]

N. Olsson, M. Oberg, L. Tzeng, T. Cella, “Ultra-Low Reflectivity 1.5 μm Semiconductor Laser Preamplifier,” Electron. Lett. 24, 569–570 (1988).
[CrossRef]

1985

T. Saitoh, T. Mukai, O. Mikami, “Theoretical Analysis and Fabrication of Antireflection Coatings on Laser-Diode Facets,” IEEE/OSA J. Lightwave Technol. LT-3, 288–293 (1985).
[CrossRef]

1984

D. Schalch, A. Scharmann, R. Wolfrat, “The Role of Hydrogen in Silicon Nitride and Silicon Oxynitride Films,” Thin Solid Films 124, 301–308 (1984).
[CrossRef]

G. Eisenstein, “Theoretical Design of Single-Layer Antireflection Coatings on Laser Facets,” AT&T Bell Lab. Tech. J. 63, 357–364 (1984).

G. Eisenstein, L. W. Stulz, “High Quality Antireflection Coatings on Laser Facets by Sputtered Silicon Nitride,” Appl. Opt. 23, 161–164 (1984).
[CrossRef] [PubMed]

1983

I. Kaminow, G. Eisenstein, L. Stulz, “Measurement of the Modal Reflectivity of an Antireflection Coating on a Superluminescent Diode,” IEEE J. Quantum Electron. QE-19, 493–495 (1983).
[CrossRef]

1982

J. Harper, J. Cuomo, H. Kaufman, “Technology and Applications of Broad-Beam Ion Source Used in Sputtering—Part II. Applications,” J. Vac. Sci. Technol. 21, 737–756 (1982).
[CrossRef]

1973

Tien-Peilee, C. Burrus, B. Miller, “A Stripe-Geometry Double-Heterostructure Amplified-Spontaneous-Emission (Superluminescent) Diode,” IEEE J. Quantum Electron. QE-9, 820–828 (1973).
[CrossRef]

Burrus, C.

Tien-Peilee, C. Burrus, B. Miller, “A Stripe-Geometry Double-Heterostructure Amplified-Spontaneous-Emission (Superluminescent) Diode,” IEEE J. Quantum Electron. QE-9, 820–828 (1973).
[CrossRef]

Cella, T.

N. Olsson, M. Oberg, L. Tzeng, T. Cella, “Ultra-Low Reflectivity 1.5 μm Semiconductor Laser Preamplifier,” Electron. Lett. 24, 569–570 (1988).
[CrossRef]

Cuomo, J.

J. Harper, J. Cuomo, H. Kaufman, “Technology and Applications of Broad-Beam Ion Source Used in Sputtering—Part II. Applications,” J. Vac. Sci. Technol. 21, 737–756 (1982).
[CrossRef]

Eisenstein, G.

G. Eisenstein, L. W. Stulz, “High Quality Antireflection Coatings on Laser Facets by Sputtered Silicon Nitride,” Appl. Opt. 23, 161–164 (1984).
[CrossRef] [PubMed]

G. Eisenstein, “Theoretical Design of Single-Layer Antireflection Coatings on Laser Facets,” AT&T Bell Lab. Tech. J. 63, 357–364 (1984).

I. Kaminow, G. Eisenstein, L. Stulz, “Measurement of the Modal Reflectivity of an Antireflection Coating on a Superluminescent Diode,” IEEE J. Quantum Electron. QE-19, 493–495 (1983).
[CrossRef]

Fujimori, S.

Harper, J.

J. Harper, J. Cuomo, H. Kaufman, “Technology and Applications of Broad-Beam Ion Source Used in Sputtering—Part II. Applications,” J. Vac. Sci. Technol. 21, 737–756 (1982).
[CrossRef]

Kaminow, I.

I. Kaminow, G. Eisenstein, L. Stulz, “Measurement of the Modal Reflectivity of an Antireflection Coating on a Superluminescent Diode,” IEEE J. Quantum Electron. QE-19, 493–495 (1983).
[CrossRef]

Katagiri, Y.

H. Ukita, Y. Katagiri, S. Fujimori, “Supersmall Flying Optical Head for Phase Change Recording Media,” Appl. Opt. 28, 4360–4365 (1989).
[CrossRef] [PubMed]

Y. Katagiri, H. Ukita, “Improvement in Signal-to-Noise Ratio of Longitudinally-Coupled-Cavity Laser by Internal Facet Reflectivity Reduction,” Jpn. J. Appl. Phys. 28, Suppl. 28-3, 177–182 (1989).

Kaufman, H.

J. Harper, J. Cuomo, H. Kaufman, “Technology and Applications of Broad-Beam Ion Source Used in Sputtering—Part II. Applications,” J. Vac. Sci. Technol. 21, 737–756 (1982).
[CrossRef]

Kondo, H.

H. Kondo, T. Mizoguchi, “Internal Stress in IBS Films,” Mater. Sci. Eng. 98, 519–522 (1988).
[CrossRef]

Landousies, B.

J. Simon, B. Landousies, C. Vassallo, “Polarization Characteristics of Very Low Reflectivity Coatings for Semiconductor Laser Amplifiers,” in Technical Digest, Twelfth European Conference on Optical Communication, Barcelona (1986), Vol. 1, pp. 249–252.

Mikami, O.

T. Saitoh, T. Mukai, O. Mikami, “Theoretical Analysis and Fabrication of Antireflection Coatings on Laser-Diode Facets,” IEEE/OSA J. Lightwave Technol. LT-3, 288–293 (1985).
[CrossRef]

Miller, B.

Tien-Peilee, C. Burrus, B. Miller, “A Stripe-Geometry Double-Heterostructure Amplified-Spontaneous-Emission (Superluminescent) Diode,” IEEE J. Quantum Electron. QE-9, 820–828 (1973).
[CrossRef]

Mizoguchi, T.

H. Kondo, T. Mizoguchi, “Internal Stress in IBS Films,” Mater. Sci. Eng. 98, 519–522 (1988).
[CrossRef]

Mukai, T.

T. Saitoh, T. Mukai, O. Mikami, “Theoretical Analysis and Fabrication of Antireflection Coatings on Laser-Diode Facets,” IEEE/OSA J. Lightwave Technol. LT-3, 288–293 (1985).
[CrossRef]

T. Saitoh, T. Mukai, Y. Noguchi, “Fabrication and Gain Characteristics of a 1.5 μm GaInAsP Travelling-Wave Optical Amplifier,” in Technical Digest, First Optoelectronics Conference, Tokyo (1986), B11-2, 12–13.

Noguchi, Y.

T. Saitoh, T. Mukai, Y. Noguchi, “Fabrication and Gain Characteristics of a 1.5 μm GaInAsP Travelling-Wave Optical Amplifier,” in Technical Digest, First Optoelectronics Conference, Tokyo (1986), B11-2, 12–13.

Oberg, M.

N. Olsson, M. Oberg, L. Tzeng, T. Cella, “Ultra-Low Reflectivity 1.5 μm Semiconductor Laser Preamplifier,” Electron. Lett. 24, 569–570 (1988).
[CrossRef]

Olsson, N.

N. Olsson, M. Oberg, L. Tzeng, T. Cella, “Ultra-Low Reflectivity 1.5 μm Semiconductor Laser Preamplifier,” Electron. Lett. 24, 569–570 (1988).
[CrossRef]

Saitoh, T.

T. Saitoh, T. Mukai, O. Mikami, “Theoretical Analysis and Fabrication of Antireflection Coatings on Laser-Diode Facets,” IEEE/OSA J. Lightwave Technol. LT-3, 288–293 (1985).
[CrossRef]

T. Saitoh, T. Mukai, Y. Noguchi, “Fabrication and Gain Characteristics of a 1.5 μm GaInAsP Travelling-Wave Optical Amplifier,” in Technical Digest, First Optoelectronics Conference, Tokyo (1986), B11-2, 12–13.

Schalch, D.

D. Schalch, A. Scharmann, R. Wolfrat, “The Role of Hydrogen in Silicon Nitride and Silicon Oxynitride Films,” Thin Solid Films 124, 301–308 (1984).
[CrossRef]

Scharmann, A.

D. Schalch, A. Scharmann, R. Wolfrat, “The Role of Hydrogen in Silicon Nitride and Silicon Oxynitride Films,” Thin Solid Films 124, 301–308 (1984).
[CrossRef]

Simon, J.

J. Simon, B. Landousies, C. Vassallo, “Polarization Characteristics of Very Low Reflectivity Coatings for Semiconductor Laser Amplifiers,” in Technical Digest, Twelfth European Conference on Optical Communication, Barcelona (1986), Vol. 1, pp. 249–252.

Stulz, L.

I. Kaminow, G. Eisenstein, L. Stulz, “Measurement of the Modal Reflectivity of an Antireflection Coating on a Superluminescent Diode,” IEEE J. Quantum Electron. QE-19, 493–495 (1983).
[CrossRef]

Stulz, L. W.

Tien-Peilee,

Tien-Peilee, C. Burrus, B. Miller, “A Stripe-Geometry Double-Heterostructure Amplified-Spontaneous-Emission (Superluminescent) Diode,” IEEE J. Quantum Electron. QE-9, 820–828 (1973).
[CrossRef]

Tzeng, L.

N. Olsson, M. Oberg, L. Tzeng, T. Cella, “Ultra-Low Reflectivity 1.5 μm Semiconductor Laser Preamplifier,” Electron. Lett. 24, 569–570 (1988).
[CrossRef]

Ukita, H.

H. Ukita, Y. Katagiri, S. Fujimori, “Supersmall Flying Optical Head for Phase Change Recording Media,” Appl. Opt. 28, 4360–4365 (1989).
[CrossRef] [PubMed]

Y. Katagiri, H. Ukita, “Improvement in Signal-to-Noise Ratio of Longitudinally-Coupled-Cavity Laser by Internal Facet Reflectivity Reduction,” Jpn. J. Appl. Phys. 28, Suppl. 28-3, 177–182 (1989).

Vassallo, C.

J. Simon, B. Landousies, C. Vassallo, “Polarization Characteristics of Very Low Reflectivity Coatings for Semiconductor Laser Amplifiers,” in Technical Digest, Twelfth European Conference on Optical Communication, Barcelona (1986), Vol. 1, pp. 249–252.

Wolfrat, R.

D. Schalch, A. Scharmann, R. Wolfrat, “The Role of Hydrogen in Silicon Nitride and Silicon Oxynitride Films,” Thin Solid Films 124, 301–308 (1984).
[CrossRef]

Appl. Opt.

AT&T Bell Lab. Tech. J.

G. Eisenstein, “Theoretical Design of Single-Layer Antireflection Coatings on Laser Facets,” AT&T Bell Lab. Tech. J. 63, 357–364 (1984).

Electron. Lett.

N. Olsson, M. Oberg, L. Tzeng, T. Cella, “Ultra-Low Reflectivity 1.5 μm Semiconductor Laser Preamplifier,” Electron. Lett. 24, 569–570 (1988).
[CrossRef]

IEEE J. Quantum Electron.

Tien-Peilee, C. Burrus, B. Miller, “A Stripe-Geometry Double-Heterostructure Amplified-Spontaneous-Emission (Superluminescent) Diode,” IEEE J. Quantum Electron. QE-9, 820–828 (1973).
[CrossRef]

I. Kaminow, G. Eisenstein, L. Stulz, “Measurement of the Modal Reflectivity of an Antireflection Coating on a Superluminescent Diode,” IEEE J. Quantum Electron. QE-19, 493–495 (1983).
[CrossRef]

IEEE/OSA J. Lightwave Technol.

T. Saitoh, T. Mukai, O. Mikami, “Theoretical Analysis and Fabrication of Antireflection Coatings on Laser-Diode Facets,” IEEE/OSA J. Lightwave Technol. LT-3, 288–293 (1985).
[CrossRef]

J. Vac. Sci. Technol.

J. Harper, J. Cuomo, H. Kaufman, “Technology and Applications of Broad-Beam Ion Source Used in Sputtering—Part II. Applications,” J. Vac. Sci. Technol. 21, 737–756 (1982).
[CrossRef]

Jpn. J. Appl. Phys.

Y. Katagiri, H. Ukita, “Improvement in Signal-to-Noise Ratio of Longitudinally-Coupled-Cavity Laser by Internal Facet Reflectivity Reduction,” Jpn. J. Appl. Phys. 28, Suppl. 28-3, 177–182 (1989).

Mater. Sci. Eng.

H. Kondo, T. Mizoguchi, “Internal Stress in IBS Films,” Mater. Sci. Eng. 98, 519–522 (1988).
[CrossRef]

Thin Solid Films

D. Schalch, A. Scharmann, R. Wolfrat, “The Role of Hydrogen in Silicon Nitride and Silicon Oxynitride Films,” Thin Solid Films 124, 301–308 (1984).
[CrossRef]

Other

J. Simon, B. Landousies, C. Vassallo, “Polarization Characteristics of Very Low Reflectivity Coatings for Semiconductor Laser Amplifiers,” in Technical Digest, Twelfth European Conference on Optical Communication, Barcelona (1986), Vol. 1, pp. 249–252.

T. Saitoh, T. Mukai, Y. Noguchi, “Fabrication and Gain Characteristics of a 1.5 μm GaInAsP Travelling-Wave Optical Amplifier,” in Technical Digest, First Optoelectronics Conference, Tokyo (1986), B11-2, 12–13.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic diagram of the ion beam sputtering system using a Si target and O2–N2 discharges. The substrate temperature was maintained at room temperature by water cooling.

Fig. 2
Fig. 2

Influence of the discharge current on the refractive index of thin films deposited by ion beam sputtering.

Fig. 3
Fig. 3

Relationship between the refractive index and the ratio of the O2 gas flow rate to the N2 gas flow rate.

Fig. 4
Fig. 4

Relationship between the refractive index and the SiO2 mole fraction. The circles are experimental results. The solid line is derived by averaging the refractive indices of the two materials of SiO2 and Si3N4 according to the mole fraction.

Fig. 5
Fig. 5

Light output vs current characteristics before and after the deposition of ARC onto one laser facet.

Fig. 6
Fig. 6

Emission spectra for a AlGaAs DH laser with the ARC. The ARC facet reflectivity is 8.5 × 10−5.

Fig. 7
Fig. 7

Linear dependence of the logarithmic net amplification factor on current.

Fig. 8
Fig. 8

Relationship between the ARC facet reflectivity and the refractive index of ARC. Circles are experimental results. The solid lines are calculated using the expression { ( n f 2 - n s ) / ( n f 2 + n s ) }, where ns is 3.46.

Fig. 9
Fig. 9

Schematic diagram of the optically switched laser head.

Fig. 10
Fig. 10

Effects of ARC on suppressing interferometric light output variation.

Fig. 11
Fig. 11

Effect of laser facet reflectivity reduction on suppressing the light output variation due to the external cavity length.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

n f = 1.46 x 3 - 2 x + 1.98 3 - 3 x 3 - 2 x .
ln ( a ) = g L I I th - [ g L - 1 2 ln ( R 2 R 1 ) ] .
m = P max - P min P max + P min ,
m = 2 a 1 + a 2 .
R 2 = R 1 a th 2 ,
R 2 = ( n f 2 - n s n 0 n f 2 + n s n 0 ) 2 ,
F = P N T - P N B P N T - P N + 1 T ,

Metrics