Abstract

Optical triode characteristics of a nonlinear etalon combined with GRIN lenses are investigated. This configuration facilitates adjustment of detuning by a factor of 10–50 and enables a high on–off ratio operation using a double detuning operation. An optical gate and spatial switches are also fabricated using this configuration.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, New York, 1985).
  2. M. C. Rushford, H. M. Gibbs, J. L. Jewell, N. Peyghambarian, D. A. Weinberger, C. F. Li, “Observation of Thermal Optical Bistability, Crosstalk, Regenerative Pulsations, and External Switch-off in a Simple Dye-Filled Etalon,” in Optical Bistability 2 (Plenum, New York, 1984), p. 345.
    [CrossRef]
  3. T. Kurokawa, H. Tsuda, S. Fukushima, “Optical Flip-Flop and Logic Gate Operations with ZnSe Nonlinear Etalons Using Two Light Beams,” in Technical Digest, International Quantum Electronics Conference (Optical Society of America, Washington, DC, 1988), paper TUL9.
  4. H. M. Gibbs, S. L. McCall, A. Passner, A. C. Gossard, W. Wiegmann, T. N. C. Venkatesan, “Progress Toward Practical Optical Bistable Devices,” IEEE J. Quantum Electron. QE-15, No 9, 108D (1979).
  5. S. D. Smith et al., “Restoring Optical Logic: Demonstration of Extensible All-Optical Digital Systems,” Opt. Eng. 26, 045–052 (1987).
  6. F. A. P. Tooley, N. Craft, S. D. Smith, B. S. Wherrett, “Experimental Realization of an All-Optical Single-Gate Full-Adder Circuit,” Opt. Commun. 63, 365–370 (1987).
    [CrossRef]
  7. I. Janossy, M. R. Taghizadeh, J. G. H. Mathew, S. D. Smith, “Thermally Induced Optical Bistability in Thin Film Devices,” IEEE J Quantum Electron. QE-21, 1447–1452 (1985).
    [CrossRef]
  8. A. C. Walker et al., “Optically Bistable Thin-Film Interference Devices and Holographic Techniques for Experiments in Digital Optics,” Opt. Eng. 27, 038–043 (1988).
  9. Y. H. Lee, J. L. Jewell, “Electro-Dispersive Multiple Quantum Well Modulator,” in Technical Digest, International Quantum Electronics Conference (Optical Society of America, Washington, DC, 1988), paper TUB6.
  10. H. Tsuda, T. Kurokawa, “Optical Triode Switch Module with a Nonlinear Etalon,” IEEE J. Photon. Tech. Lett. PTL-1, No. 12, 449–451 (1989).
    [CrossRef]
  11. G. S. Buller, C. R. Paton, S. D. Smith, A. C. Walker, “Optically Bistable Nonlinear Interference Filters for Use with Near-Infrared Laser Diodes,” Opt. Commun. 70, 522–528 (1989).
    [CrossRef]
  12. D. A. B. Miller, “Refractive Fabry-Perot Bistability with Linear Absorption: Theory of Operation and Cavity Optimization,” IEEE J. Quantum Electron. QE-17, 306–311 (1981).
    [CrossRef]

1989 (2)

H. Tsuda, T. Kurokawa, “Optical Triode Switch Module with a Nonlinear Etalon,” IEEE J. Photon. Tech. Lett. PTL-1, No. 12, 449–451 (1989).
[CrossRef]

G. S. Buller, C. R. Paton, S. D. Smith, A. C. Walker, “Optically Bistable Nonlinear Interference Filters for Use with Near-Infrared Laser Diodes,” Opt. Commun. 70, 522–528 (1989).
[CrossRef]

1988 (1)

A. C. Walker et al., “Optically Bistable Thin-Film Interference Devices and Holographic Techniques for Experiments in Digital Optics,” Opt. Eng. 27, 038–043 (1988).

1987 (2)

S. D. Smith et al., “Restoring Optical Logic: Demonstration of Extensible All-Optical Digital Systems,” Opt. Eng. 26, 045–052 (1987).

F. A. P. Tooley, N. Craft, S. D. Smith, B. S. Wherrett, “Experimental Realization of an All-Optical Single-Gate Full-Adder Circuit,” Opt. Commun. 63, 365–370 (1987).
[CrossRef]

1985 (1)

I. Janossy, M. R. Taghizadeh, J. G. H. Mathew, S. D. Smith, “Thermally Induced Optical Bistability in Thin Film Devices,” IEEE J Quantum Electron. QE-21, 1447–1452 (1985).
[CrossRef]

1981 (1)

D. A. B. Miller, “Refractive Fabry-Perot Bistability with Linear Absorption: Theory of Operation and Cavity Optimization,” IEEE J. Quantum Electron. QE-17, 306–311 (1981).
[CrossRef]

1979 (1)

H. M. Gibbs, S. L. McCall, A. Passner, A. C. Gossard, W. Wiegmann, T. N. C. Venkatesan, “Progress Toward Practical Optical Bistable Devices,” IEEE J. Quantum Electron. QE-15, No 9, 108D (1979).

Buller, G. S.

G. S. Buller, C. R. Paton, S. D. Smith, A. C. Walker, “Optically Bistable Nonlinear Interference Filters for Use with Near-Infrared Laser Diodes,” Opt. Commun. 70, 522–528 (1989).
[CrossRef]

Craft, N.

F. A. P. Tooley, N. Craft, S. D. Smith, B. S. Wherrett, “Experimental Realization of an All-Optical Single-Gate Full-Adder Circuit,” Opt. Commun. 63, 365–370 (1987).
[CrossRef]

Fukushima, S.

T. Kurokawa, H. Tsuda, S. Fukushima, “Optical Flip-Flop and Logic Gate Operations with ZnSe Nonlinear Etalons Using Two Light Beams,” in Technical Digest, International Quantum Electronics Conference (Optical Society of America, Washington, DC, 1988), paper TUL9.

Gibbs, H. M.

H. M. Gibbs, S. L. McCall, A. Passner, A. C. Gossard, W. Wiegmann, T. N. C. Venkatesan, “Progress Toward Practical Optical Bistable Devices,” IEEE J. Quantum Electron. QE-15, No 9, 108D (1979).

M. C. Rushford, H. M. Gibbs, J. L. Jewell, N. Peyghambarian, D. A. Weinberger, C. F. Li, “Observation of Thermal Optical Bistability, Crosstalk, Regenerative Pulsations, and External Switch-off in a Simple Dye-Filled Etalon,” in Optical Bistability 2 (Plenum, New York, 1984), p. 345.
[CrossRef]

H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, New York, 1985).

Gossard, A. C.

H. M. Gibbs, S. L. McCall, A. Passner, A. C. Gossard, W. Wiegmann, T. N. C. Venkatesan, “Progress Toward Practical Optical Bistable Devices,” IEEE J. Quantum Electron. QE-15, No 9, 108D (1979).

Janossy, I.

I. Janossy, M. R. Taghizadeh, J. G. H. Mathew, S. D. Smith, “Thermally Induced Optical Bistability in Thin Film Devices,” IEEE J Quantum Electron. QE-21, 1447–1452 (1985).
[CrossRef]

Jewell, J. L.

Y. H. Lee, J. L. Jewell, “Electro-Dispersive Multiple Quantum Well Modulator,” in Technical Digest, International Quantum Electronics Conference (Optical Society of America, Washington, DC, 1988), paper TUB6.

M. C. Rushford, H. M. Gibbs, J. L. Jewell, N. Peyghambarian, D. A. Weinberger, C. F. Li, “Observation of Thermal Optical Bistability, Crosstalk, Regenerative Pulsations, and External Switch-off in a Simple Dye-Filled Etalon,” in Optical Bistability 2 (Plenum, New York, 1984), p. 345.
[CrossRef]

Kurokawa, T.

H. Tsuda, T. Kurokawa, “Optical Triode Switch Module with a Nonlinear Etalon,” IEEE J. Photon. Tech. Lett. PTL-1, No. 12, 449–451 (1989).
[CrossRef]

T. Kurokawa, H. Tsuda, S. Fukushima, “Optical Flip-Flop and Logic Gate Operations with ZnSe Nonlinear Etalons Using Two Light Beams,” in Technical Digest, International Quantum Electronics Conference (Optical Society of America, Washington, DC, 1988), paper TUL9.

Lee, Y. H.

Y. H. Lee, J. L. Jewell, “Electro-Dispersive Multiple Quantum Well Modulator,” in Technical Digest, International Quantum Electronics Conference (Optical Society of America, Washington, DC, 1988), paper TUB6.

Li, C. F.

M. C. Rushford, H. M. Gibbs, J. L. Jewell, N. Peyghambarian, D. A. Weinberger, C. F. Li, “Observation of Thermal Optical Bistability, Crosstalk, Regenerative Pulsations, and External Switch-off in a Simple Dye-Filled Etalon,” in Optical Bistability 2 (Plenum, New York, 1984), p. 345.
[CrossRef]

Mathew, J. G. H.

I. Janossy, M. R. Taghizadeh, J. G. H. Mathew, S. D. Smith, “Thermally Induced Optical Bistability in Thin Film Devices,” IEEE J Quantum Electron. QE-21, 1447–1452 (1985).
[CrossRef]

McCall, S. L.

H. M. Gibbs, S. L. McCall, A. Passner, A. C. Gossard, W. Wiegmann, T. N. C. Venkatesan, “Progress Toward Practical Optical Bistable Devices,” IEEE J. Quantum Electron. QE-15, No 9, 108D (1979).

Miller, D. A. B.

D. A. B. Miller, “Refractive Fabry-Perot Bistability with Linear Absorption: Theory of Operation and Cavity Optimization,” IEEE J. Quantum Electron. QE-17, 306–311 (1981).
[CrossRef]

Passner, A.

H. M. Gibbs, S. L. McCall, A. Passner, A. C. Gossard, W. Wiegmann, T. N. C. Venkatesan, “Progress Toward Practical Optical Bistable Devices,” IEEE J. Quantum Electron. QE-15, No 9, 108D (1979).

Paton, C. R.

G. S. Buller, C. R. Paton, S. D. Smith, A. C. Walker, “Optically Bistable Nonlinear Interference Filters for Use with Near-Infrared Laser Diodes,” Opt. Commun. 70, 522–528 (1989).
[CrossRef]

Peyghambarian, N.

M. C. Rushford, H. M. Gibbs, J. L. Jewell, N. Peyghambarian, D. A. Weinberger, C. F. Li, “Observation of Thermal Optical Bistability, Crosstalk, Regenerative Pulsations, and External Switch-off in a Simple Dye-Filled Etalon,” in Optical Bistability 2 (Plenum, New York, 1984), p. 345.
[CrossRef]

Rushford, M. C.

M. C. Rushford, H. M. Gibbs, J. L. Jewell, N. Peyghambarian, D. A. Weinberger, C. F. Li, “Observation of Thermal Optical Bistability, Crosstalk, Regenerative Pulsations, and External Switch-off in a Simple Dye-Filled Etalon,” in Optical Bistability 2 (Plenum, New York, 1984), p. 345.
[CrossRef]

Smith, S. D.

G. S. Buller, C. R. Paton, S. D. Smith, A. C. Walker, “Optically Bistable Nonlinear Interference Filters for Use with Near-Infrared Laser Diodes,” Opt. Commun. 70, 522–528 (1989).
[CrossRef]

F. A. P. Tooley, N. Craft, S. D. Smith, B. S. Wherrett, “Experimental Realization of an All-Optical Single-Gate Full-Adder Circuit,” Opt. Commun. 63, 365–370 (1987).
[CrossRef]

S. D. Smith et al., “Restoring Optical Logic: Demonstration of Extensible All-Optical Digital Systems,” Opt. Eng. 26, 045–052 (1987).

I. Janossy, M. R. Taghizadeh, J. G. H. Mathew, S. D. Smith, “Thermally Induced Optical Bistability in Thin Film Devices,” IEEE J Quantum Electron. QE-21, 1447–1452 (1985).
[CrossRef]

Taghizadeh, M. R.

I. Janossy, M. R. Taghizadeh, J. G. H. Mathew, S. D. Smith, “Thermally Induced Optical Bistability in Thin Film Devices,” IEEE J Quantum Electron. QE-21, 1447–1452 (1985).
[CrossRef]

Tooley, F. A. P.

F. A. P. Tooley, N. Craft, S. D. Smith, B. S. Wherrett, “Experimental Realization of an All-Optical Single-Gate Full-Adder Circuit,” Opt. Commun. 63, 365–370 (1987).
[CrossRef]

Tsuda, H.

H. Tsuda, T. Kurokawa, “Optical Triode Switch Module with a Nonlinear Etalon,” IEEE J. Photon. Tech. Lett. PTL-1, No. 12, 449–451 (1989).
[CrossRef]

T. Kurokawa, H. Tsuda, S. Fukushima, “Optical Flip-Flop and Logic Gate Operations with ZnSe Nonlinear Etalons Using Two Light Beams,” in Technical Digest, International Quantum Electronics Conference (Optical Society of America, Washington, DC, 1988), paper TUL9.

Venkatesan, T. N. C.

H. M. Gibbs, S. L. McCall, A. Passner, A. C. Gossard, W. Wiegmann, T. N. C. Venkatesan, “Progress Toward Practical Optical Bistable Devices,” IEEE J. Quantum Electron. QE-15, No 9, 108D (1979).

Walker, A. C.

G. S. Buller, C. R. Paton, S. D. Smith, A. C. Walker, “Optically Bistable Nonlinear Interference Filters for Use with Near-Infrared Laser Diodes,” Opt. Commun. 70, 522–528 (1989).
[CrossRef]

A. C. Walker et al., “Optically Bistable Thin-Film Interference Devices and Holographic Techniques for Experiments in Digital Optics,” Opt. Eng. 27, 038–043 (1988).

Weinberger, D. A.

M. C. Rushford, H. M. Gibbs, J. L. Jewell, N. Peyghambarian, D. A. Weinberger, C. F. Li, “Observation of Thermal Optical Bistability, Crosstalk, Regenerative Pulsations, and External Switch-off in a Simple Dye-Filled Etalon,” in Optical Bistability 2 (Plenum, New York, 1984), p. 345.
[CrossRef]

Wherrett, B. S.

F. A. P. Tooley, N. Craft, S. D. Smith, B. S. Wherrett, “Experimental Realization of an All-Optical Single-Gate Full-Adder Circuit,” Opt. Commun. 63, 365–370 (1987).
[CrossRef]

Wiegmann, W.

H. M. Gibbs, S. L. McCall, A. Passner, A. C. Gossard, W. Wiegmann, T. N. C. Venkatesan, “Progress Toward Practical Optical Bistable Devices,” IEEE J. Quantum Electron. QE-15, No 9, 108D (1979).

IEEE J Quantum Electron. (1)

I. Janossy, M. R. Taghizadeh, J. G. H. Mathew, S. D. Smith, “Thermally Induced Optical Bistability in Thin Film Devices,” IEEE J Quantum Electron. QE-21, 1447–1452 (1985).
[CrossRef]

IEEE J. Photon. Tech. Lett. (1)

H. Tsuda, T. Kurokawa, “Optical Triode Switch Module with a Nonlinear Etalon,” IEEE J. Photon. Tech. Lett. PTL-1, No. 12, 449–451 (1989).
[CrossRef]

IEEE J. Quantum Electron. (2)

H. M. Gibbs, S. L. McCall, A. Passner, A. C. Gossard, W. Wiegmann, T. N. C. Venkatesan, “Progress Toward Practical Optical Bistable Devices,” IEEE J. Quantum Electron. QE-15, No 9, 108D (1979).

D. A. B. Miller, “Refractive Fabry-Perot Bistability with Linear Absorption: Theory of Operation and Cavity Optimization,” IEEE J. Quantum Electron. QE-17, 306–311 (1981).
[CrossRef]

Opt. Commun. (2)

F. A. P. Tooley, N. Craft, S. D. Smith, B. S. Wherrett, “Experimental Realization of an All-Optical Single-Gate Full-Adder Circuit,” Opt. Commun. 63, 365–370 (1987).
[CrossRef]

G. S. Buller, C. R. Paton, S. D. Smith, A. C. Walker, “Optically Bistable Nonlinear Interference Filters for Use with Near-Infrared Laser Diodes,” Opt. Commun. 70, 522–528 (1989).
[CrossRef]

Opt. Eng. (2)

A. C. Walker et al., “Optically Bistable Thin-Film Interference Devices and Holographic Techniques for Experiments in Digital Optics,” Opt. Eng. 27, 038–043 (1988).

S. D. Smith et al., “Restoring Optical Logic: Demonstration of Extensible All-Optical Digital Systems,” Opt. Eng. 26, 045–052 (1987).

Other (4)

H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, New York, 1985).

M. C. Rushford, H. M. Gibbs, J. L. Jewell, N. Peyghambarian, D. A. Weinberger, C. F. Li, “Observation of Thermal Optical Bistability, Crosstalk, Regenerative Pulsations, and External Switch-off in a Simple Dye-Filled Etalon,” in Optical Bistability 2 (Plenum, New York, 1984), p. 345.
[CrossRef]

T. Kurokawa, H. Tsuda, S. Fukushima, “Optical Flip-Flop and Logic Gate Operations with ZnSe Nonlinear Etalons Using Two Light Beams,” in Technical Digest, International Quantum Electronics Conference (Optical Society of America, Washington, DC, 1988), paper TUL9.

Y. H. Lee, J. L. Jewell, “Electro-Dispersive Multiple Quantum Well Modulator,” in Technical Digest, International Quantum Electronics Conference (Optical Society of America, Washington, DC, 1988), paper TUB6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic view of a nonlinear etalon and GRIN lenses (0.25 pitch) combined.

Fig. 2
Fig. 2

Resonance wavelength of a nonlinear etalon as a function of an incident position on the GRIN lens. The solid line represents the calculated results.

Fig. 3
Fig. 3

Input–output characteristics obtained at (a) 510 and (b) 670 μm.

Fig. 4
Fig. 4

FWHM of a nonlinear etalon as a function of an incident position on the GRIN lens. The solid line represents the calculated results (Δr = 30 μm and Δr = 50 μm).

Fig. 5
Fig. 5

Calculated threshold power vs radial incident position of the input beam for Δr = 30 μm, Δr = 50 μm, and Δr = 100 μm.

Fig. 6
Fig. 6

Calculated on–off ratio as a function of the detuning ratio (psig,pcon = normalized detuning of a signal and a control beam, respectively).

Fig. 7
Fig. 7

Measured on–off ratio for various incident positions of a control beam and signal beam. The horizontal axis is the relative radial position of a signal beam against the position of a control beam.

Fig. 8
Fig. 8

(a) Schematic view of the gate switch module structure; (b) optical gate operation.

Fig. 9
Fig. 9

(a) Schematic view of the spatial switch module structure; (b) optical spatial switching operation.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

λ res ( r ) = λ 0 1 - ( n G n eff ) 2 sin 2 ( A r ) ,
Δ λ = [ Δ λ 0 2 + ( 2 n G 2 Δ θ θ λ 0 n eff 2 ) 2 ] 1 / 2 ,
T max = T max 0 n eff 2 Δ λ 0 2 n G 2 Δ θ θ λ 0 tan - 1 ( 2 n G 2 Δ θ θ λ 0 n eff 2 Δ λ 0 ) ,
θ = A r ,
Δ θ = A Δ r ,
P th0 = a d eff k π T max η 3 F ,
d eff = ( d 0 + d ) 2 [ ( d 0 + d ) 2 + L eff tan ( θ in ) ] ,
η = ( 1 + F - 1 + F ) ( T max - 1 + 1 + F - T max 2 + T max F ) ( 1 + F / 2 - 1 + F ) ( - T max + T max 2 + T max F ) ,
F = 1 sin 2 ( k π Δ λ 0 2 λ 0 ) ,
P in ( i ) = P out ( i ) [ 1 + 3 [ q P out ( i ) + q P out ( j ) - p ( i ) ] 2 ] / T max ( i , j ) = ( 1 , 2 ) , ( 2 , 1 ) ,
q = 2 π n 2 L λ 0 η F 3 ,
[ p = 2 π n 0 L λ 0 ( 1 - λ 0 λ ) F 3 ] ,

Metrics