Abstract

Infrared spectra of NO2 recorded during a recent flight of the Balloon-borne Laser In-Situ Sensor instrument have been analyzed to determine sensitivity limits for various signal integration times. Implications for direct detection of ClO, HOCl, H2O2, COF2, OH, and HO2 are discussed.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. T. Menzies, C. R. Webster, E. D. Hinkley, “Balloon-Borne Diode-Laser Absorption Spectrometer for Measurements of Stratospheric Trace Species,” Appl. Opt. 22, 2655–2664 (1983).
    [CrossRef] [PubMed]
  2. R. A. Johnson, C. R. Webster, R. T. Menzies, “Microprocessor-Controlled Tracker for Atmospheric Sensing,” Rev. Sci. Instrum. 56, 547–556 (1985).
    [CrossRef]
  3. C. R. Webster, R. D. May, “Simultaneous In-Situ Measurements and Diurnal Variations of NO, NO2, O3, jNO2, CH4, H2O, and CO2 in the 40 to 26 km Region Using an Open Path Tunable Diode Laser Spectrometer,” J. Geophys. Res. 92, 11,931–11,950 (1987).
    [CrossRef]
  4. C. R. Webster, R. D. May, R. Toumi, J. A. Pyle, “Odd-Nitrogen Partitioning and the Nighttime Formation of N2O5 in the Stratosphere: Simultaneous In-Situ Measurements of NO, NO2, HNO3, O3, N2O, and jNO2 Using the BLISS Diode Laser Spectrometer,” J. Geophys. Res. 95, 13,851–13,866 (1990).
    [CrossRef]
  5. R. D. May, C. R. Webster, “In-Situ Stratospheric Measurements of HNO3 and HCl near 30 km Using the BLISS Tunable Diode Laser Spectrometer,” J. Geophys. Res. 94, 16,343–16,350 (1989).
    [CrossRef]
  6. C. R. Webster, R. T. Menzies, E. D. Hinkley, “Infrared Laser Absorption: Theory and Applications,” in Laser Remote Chemical Analysis, R. M. Measures, Ed. (Wiley, New York, 1988), Chap. 3.
  7. D. E. Cooper, J. P. Watjen, “Two-Tone Optical Heterodyne Spectroscopy with a Tunable Lead-Salt Diode Laser,” Opt. Lett. 11, 606–608(1986).
    [CrossRef] [PubMed]
  8. D. E. Cooper, R. E. Warren, “Two-Tone Optical Heterodyne Spectroscopy with Diode Lasers: Theory of Line Shapes and Experimental Results,” J. Opt. Soc. Am B 4, 470–480 (1987).
    [CrossRef]
  9. D. E. Cooper, R. E. Warren, “Frequency Modulation Spectroscopy with Lead-Salt Diode Lasers: A Comparison of Single-Tone and Two-Tone Techniques,” Appl. Opt. 26, 3726–3732 (1987).
    [CrossRef] [PubMed]
  10. D. E. Cooper, C. B. Carlisle, “High-Sensitivity FM Spectroscopy with a Lead-Salt Diode Laser,” Opt. Lett. 13, 719–721 (1988).
    [CrossRef] [PubMed]
  11. C. B. Carlisle, D. E. Cooper, H. Preier, “Quantum Noise-Limited FM Spectroscopy with a Lead-Salt Diode Laser,” Appl. Opt. 28, 2567–2576 (1989).
    [CrossRef] [PubMed]
  12. R. D. May, C. R. Webster, “Laboratory Measurements of NO2 Line Parameters near 1600 cm−1 for the Interpretation of Stratospheric Spectra,” Geophys. Res. Lett. accepted for publication XX, 000–000 (1990).
  13. R. D. May, “Computer Processing of Tunable Diode Laser Spectra,” Appl. Spectrosc. 43, 834–839 (1989).
    [CrossRef]
  14. L. S. Rothman et al., “HITRAN Database: 1986 Edition,” Appl. Opt. 26, 4058–4097 (1987).
    [CrossRef] [PubMed]
  15. World Meteorological Organization, Atmospheric Ozone 1985: Assessment of our Understanding of the Processes Controlling its Present Distribution and Change, WMO Rep. 16, Global Ozone Research and Monitoring Project, Geneva (1985).
  16. M. S. Zahniser, K. E. McCurdy, A. C. Stanton, “Quantitative Spectroscopic Studies of the HO2 Radical: Band Strength Measurements for the ν1 and ν2 Vibrational Bands,” J. Phys. Chem. 93, 1065–1070 (1989).
    [CrossRef]
  17. C. P. Rinsland et al., “Detection of Carbonyl Fluoride in the Stratosphere,” Geophys. Res. Lett. 13, 769–772 (1986).
    [CrossRef]

1990 (1)

C. R. Webster, R. D. May, R. Toumi, J. A. Pyle, “Odd-Nitrogen Partitioning and the Nighttime Formation of N2O5 in the Stratosphere: Simultaneous In-Situ Measurements of NO, NO2, HNO3, O3, N2O, and jNO2 Using the BLISS Diode Laser Spectrometer,” J. Geophys. Res. 95, 13,851–13,866 (1990).
[CrossRef]

1989 (4)

R. D. May, C. R. Webster, “In-Situ Stratospheric Measurements of HNO3 and HCl near 30 km Using the BLISS Tunable Diode Laser Spectrometer,” J. Geophys. Res. 94, 16,343–16,350 (1989).
[CrossRef]

C. B. Carlisle, D. E. Cooper, H. Preier, “Quantum Noise-Limited FM Spectroscopy with a Lead-Salt Diode Laser,” Appl. Opt. 28, 2567–2576 (1989).
[CrossRef] [PubMed]

R. D. May, “Computer Processing of Tunable Diode Laser Spectra,” Appl. Spectrosc. 43, 834–839 (1989).
[CrossRef]

M. S. Zahniser, K. E. McCurdy, A. C. Stanton, “Quantitative Spectroscopic Studies of the HO2 Radical: Band Strength Measurements for the ν1 and ν2 Vibrational Bands,” J. Phys. Chem. 93, 1065–1070 (1989).
[CrossRef]

1988 (1)

1987 (4)

C. R. Webster, R. D. May, “Simultaneous In-Situ Measurements and Diurnal Variations of NO, NO2, O3, jNO2, CH4, H2O, and CO2 in the 40 to 26 km Region Using an Open Path Tunable Diode Laser Spectrometer,” J. Geophys. Res. 92, 11,931–11,950 (1987).
[CrossRef]

D. E. Cooper, R. E. Warren, “Two-Tone Optical Heterodyne Spectroscopy with Diode Lasers: Theory of Line Shapes and Experimental Results,” J. Opt. Soc. Am B 4, 470–480 (1987).
[CrossRef]

D. E. Cooper, R. E. Warren, “Frequency Modulation Spectroscopy with Lead-Salt Diode Lasers: A Comparison of Single-Tone and Two-Tone Techniques,” Appl. Opt. 26, 3726–3732 (1987).
[CrossRef] [PubMed]

L. S. Rothman et al., “HITRAN Database: 1986 Edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

1986 (2)

C. P. Rinsland et al., “Detection of Carbonyl Fluoride in the Stratosphere,” Geophys. Res. Lett. 13, 769–772 (1986).
[CrossRef]

D. E. Cooper, J. P. Watjen, “Two-Tone Optical Heterodyne Spectroscopy with a Tunable Lead-Salt Diode Laser,” Opt. Lett. 11, 606–608(1986).
[CrossRef] [PubMed]

1985 (1)

R. A. Johnson, C. R. Webster, R. T. Menzies, “Microprocessor-Controlled Tracker for Atmospheric Sensing,” Rev. Sci. Instrum. 56, 547–556 (1985).
[CrossRef]

1983 (1)

Carlisle, C. B.

Cooper, D. E.

Hinkley, E. D.

R. T. Menzies, C. R. Webster, E. D. Hinkley, “Balloon-Borne Diode-Laser Absorption Spectrometer for Measurements of Stratospheric Trace Species,” Appl. Opt. 22, 2655–2664 (1983).
[CrossRef] [PubMed]

C. R. Webster, R. T. Menzies, E. D. Hinkley, “Infrared Laser Absorption: Theory and Applications,” in Laser Remote Chemical Analysis, R. M. Measures, Ed. (Wiley, New York, 1988), Chap. 3.

Johnson, R. A.

R. A. Johnson, C. R. Webster, R. T. Menzies, “Microprocessor-Controlled Tracker for Atmospheric Sensing,” Rev. Sci. Instrum. 56, 547–556 (1985).
[CrossRef]

May, R. D.

C. R. Webster, R. D. May, R. Toumi, J. A. Pyle, “Odd-Nitrogen Partitioning and the Nighttime Formation of N2O5 in the Stratosphere: Simultaneous In-Situ Measurements of NO, NO2, HNO3, O3, N2O, and jNO2 Using the BLISS Diode Laser Spectrometer,” J. Geophys. Res. 95, 13,851–13,866 (1990).
[CrossRef]

R. D. May, C. R. Webster, “In-Situ Stratospheric Measurements of HNO3 and HCl near 30 km Using the BLISS Tunable Diode Laser Spectrometer,” J. Geophys. Res. 94, 16,343–16,350 (1989).
[CrossRef]

R. D. May, “Computer Processing of Tunable Diode Laser Spectra,” Appl. Spectrosc. 43, 834–839 (1989).
[CrossRef]

C. R. Webster, R. D. May, “Simultaneous In-Situ Measurements and Diurnal Variations of NO, NO2, O3, jNO2, CH4, H2O, and CO2 in the 40 to 26 km Region Using an Open Path Tunable Diode Laser Spectrometer,” J. Geophys. Res. 92, 11,931–11,950 (1987).
[CrossRef]

R. D. May, C. R. Webster, “Laboratory Measurements of NO2 Line Parameters near 1600 cm−1 for the Interpretation of Stratospheric Spectra,” Geophys. Res. Lett. accepted for publication XX, 000–000 (1990).

McCurdy, K. E.

M. S. Zahniser, K. E. McCurdy, A. C. Stanton, “Quantitative Spectroscopic Studies of the HO2 Radical: Band Strength Measurements for the ν1 and ν2 Vibrational Bands,” J. Phys. Chem. 93, 1065–1070 (1989).
[CrossRef]

Menzies, R. T.

R. A. Johnson, C. R. Webster, R. T. Menzies, “Microprocessor-Controlled Tracker for Atmospheric Sensing,” Rev. Sci. Instrum. 56, 547–556 (1985).
[CrossRef]

R. T. Menzies, C. R. Webster, E. D. Hinkley, “Balloon-Borne Diode-Laser Absorption Spectrometer for Measurements of Stratospheric Trace Species,” Appl. Opt. 22, 2655–2664 (1983).
[CrossRef] [PubMed]

C. R. Webster, R. T. Menzies, E. D. Hinkley, “Infrared Laser Absorption: Theory and Applications,” in Laser Remote Chemical Analysis, R. M. Measures, Ed. (Wiley, New York, 1988), Chap. 3.

Preier, H.

Pyle, J. A.

C. R. Webster, R. D. May, R. Toumi, J. A. Pyle, “Odd-Nitrogen Partitioning and the Nighttime Formation of N2O5 in the Stratosphere: Simultaneous In-Situ Measurements of NO, NO2, HNO3, O3, N2O, and jNO2 Using the BLISS Diode Laser Spectrometer,” J. Geophys. Res. 95, 13,851–13,866 (1990).
[CrossRef]

Rinsland, C. P.

C. P. Rinsland et al., “Detection of Carbonyl Fluoride in the Stratosphere,” Geophys. Res. Lett. 13, 769–772 (1986).
[CrossRef]

Rothman, L. S.

Stanton, A. C.

M. S. Zahniser, K. E. McCurdy, A. C. Stanton, “Quantitative Spectroscopic Studies of the HO2 Radical: Band Strength Measurements for the ν1 and ν2 Vibrational Bands,” J. Phys. Chem. 93, 1065–1070 (1989).
[CrossRef]

Toumi, R.

C. R. Webster, R. D. May, R. Toumi, J. A. Pyle, “Odd-Nitrogen Partitioning and the Nighttime Formation of N2O5 in the Stratosphere: Simultaneous In-Situ Measurements of NO, NO2, HNO3, O3, N2O, and jNO2 Using the BLISS Diode Laser Spectrometer,” J. Geophys. Res. 95, 13,851–13,866 (1990).
[CrossRef]

Warren, R. E.

D. E. Cooper, R. E. Warren, “Two-Tone Optical Heterodyne Spectroscopy with Diode Lasers: Theory of Line Shapes and Experimental Results,” J. Opt. Soc. Am B 4, 470–480 (1987).
[CrossRef]

D. E. Cooper, R. E. Warren, “Frequency Modulation Spectroscopy with Lead-Salt Diode Lasers: A Comparison of Single-Tone and Two-Tone Techniques,” Appl. Opt. 26, 3726–3732 (1987).
[CrossRef] [PubMed]

Watjen, J. P.

Webster, C. R.

C. R. Webster, R. D. May, R. Toumi, J. A. Pyle, “Odd-Nitrogen Partitioning and the Nighttime Formation of N2O5 in the Stratosphere: Simultaneous In-Situ Measurements of NO, NO2, HNO3, O3, N2O, and jNO2 Using the BLISS Diode Laser Spectrometer,” J. Geophys. Res. 95, 13,851–13,866 (1990).
[CrossRef]

R. D. May, C. R. Webster, “In-Situ Stratospheric Measurements of HNO3 and HCl near 30 km Using the BLISS Tunable Diode Laser Spectrometer,” J. Geophys. Res. 94, 16,343–16,350 (1989).
[CrossRef]

C. R. Webster, R. D. May, “Simultaneous In-Situ Measurements and Diurnal Variations of NO, NO2, O3, jNO2, CH4, H2O, and CO2 in the 40 to 26 km Region Using an Open Path Tunable Diode Laser Spectrometer,” J. Geophys. Res. 92, 11,931–11,950 (1987).
[CrossRef]

R. A. Johnson, C. R. Webster, R. T. Menzies, “Microprocessor-Controlled Tracker for Atmospheric Sensing,” Rev. Sci. Instrum. 56, 547–556 (1985).
[CrossRef]

R. T. Menzies, C. R. Webster, E. D. Hinkley, “Balloon-Borne Diode-Laser Absorption Spectrometer for Measurements of Stratospheric Trace Species,” Appl. Opt. 22, 2655–2664 (1983).
[CrossRef] [PubMed]

C. R. Webster, R. T. Menzies, E. D. Hinkley, “Infrared Laser Absorption: Theory and Applications,” in Laser Remote Chemical Analysis, R. M. Measures, Ed. (Wiley, New York, 1988), Chap. 3.

R. D. May, C. R. Webster, “Laboratory Measurements of NO2 Line Parameters near 1600 cm−1 for the Interpretation of Stratospheric Spectra,” Geophys. Res. Lett. accepted for publication XX, 000–000 (1990).

Zahniser, M. S.

M. S. Zahniser, K. E. McCurdy, A. C. Stanton, “Quantitative Spectroscopic Studies of the HO2 Radical: Band Strength Measurements for the ν1 and ν2 Vibrational Bands,” J. Phys. Chem. 93, 1065–1070 (1989).
[CrossRef]

Appl. Opt. (4)

Appl. Spectrosc. (1)

Geophys. Res. Lett. (1)

C. P. Rinsland et al., “Detection of Carbonyl Fluoride in the Stratosphere,” Geophys. Res. Lett. 13, 769–772 (1986).
[CrossRef]

J. Geophys. Res. (3)

C. R. Webster, R. D. May, “Simultaneous In-Situ Measurements and Diurnal Variations of NO, NO2, O3, jNO2, CH4, H2O, and CO2 in the 40 to 26 km Region Using an Open Path Tunable Diode Laser Spectrometer,” J. Geophys. Res. 92, 11,931–11,950 (1987).
[CrossRef]

C. R. Webster, R. D. May, R. Toumi, J. A. Pyle, “Odd-Nitrogen Partitioning and the Nighttime Formation of N2O5 in the Stratosphere: Simultaneous In-Situ Measurements of NO, NO2, HNO3, O3, N2O, and jNO2 Using the BLISS Diode Laser Spectrometer,” J. Geophys. Res. 95, 13,851–13,866 (1990).
[CrossRef]

R. D. May, C. R. Webster, “In-Situ Stratospheric Measurements of HNO3 and HCl near 30 km Using the BLISS Tunable Diode Laser Spectrometer,” J. Geophys. Res. 94, 16,343–16,350 (1989).
[CrossRef]

J. Opt. Soc. Am B (1)

D. E. Cooper, R. E. Warren, “Two-Tone Optical Heterodyne Spectroscopy with Diode Lasers: Theory of Line Shapes and Experimental Results,” J. Opt. Soc. Am B 4, 470–480 (1987).
[CrossRef]

J. Phys. Chem. (1)

M. S. Zahniser, K. E. McCurdy, A. C. Stanton, “Quantitative Spectroscopic Studies of the HO2 Radical: Band Strength Measurements for the ν1 and ν2 Vibrational Bands,” J. Phys. Chem. 93, 1065–1070 (1989).
[CrossRef]

Opt. Lett. (2)

Rev. Sci. Instrum. (1)

R. A. Johnson, C. R. Webster, R. T. Menzies, “Microprocessor-Controlled Tracker for Atmospheric Sensing,” Rev. Sci. Instrum. 56, 547–556 (1985).
[CrossRef]

Other (3)

C. R. Webster, R. T. Menzies, E. D. Hinkley, “Infrared Laser Absorption: Theory and Applications,” in Laser Remote Chemical Analysis, R. M. Measures, Ed. (Wiley, New York, 1988), Chap. 3.

R. D. May, C. R. Webster, “Laboratory Measurements of NO2 Line Parameters near 1600 cm−1 for the Interpretation of Stratospheric Spectra,” Geophys. Res. Lett. accepted for publication XX, 000–000 (1990).

World Meteorological Organization, Atmospheric Ozone 1985: Assessment of our Understanding of the Processes Controlling its Present Distribution and Change, WMO Rep. 16, Global Ozone Research and Monitoring Project, Geneva (1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Individual 32-s NO2 scans recorded 12 min apart (a) and an average of sixteen individual scans recorded in sequence (b). The periodic baseline fluctuations in the individual scans are the result of optical fringing, which averages out with increased integration times due to temporal drifts in the relative phases of the background fringe patterns.

Fig. 2
Fig. 2

BLISS flight NO2 spectra corresponding to integration time of (a) 40 and (b) 80 min. A synthetic spectrum is shown in (c). The vertical scaling has been increased relative to the spectra in Fig. 1 by a factor of 10. Two weak NO2 lines can be identified at the left end of the spectrum, but some of the other features could not be assigned.

Fig. 3
Fig. 3

Least-squares fit to the spectrum of Fig. 2(b) using only lines known to belong to NO2. The residual (observed–calculated) spectrum is plotted in the lower panel and has an rms amplitude of 7 × 10−6 in absorptance units.

Tables (1)

Tables Icon

Table I Calculated BLISS SNRs for a 1-h Signal Integration Time

Metrics