Abstract

With respect to the investigation of low pressure filament-assisted chemical vapor deposition processes for diamond formation, absolute concentrations of atomic hydrogen were determined by two-photon laser-induced fluorescence in the vicinity a heated filament in an environment containing H2 or mixtures of H2 and CH4. Radial H concentration profiles were obtained for different pressures and filament temperatures, diameters, and materials. The influence of the addition of various amounts of methane on the H atom concentrations was examined.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Angus, C. C. Hayman, “Low-Pressure, Metastable Growth of Diamond and ‘Diamondlike’ Phases,” Science 241, 913–921 (1988).
    [Crossref] [PubMed]
  2. K. E. Spear, “Diamond-Ceramic Coating of the Future,” J. Am. Ceram. Soc. 72, 171–191 (1989).
    [Crossref]
  3. M. Frenklach, “The Role of Hydrogen in Vapor Deposition of Diamond,” J. Appl. Phys. 65, 5142–5149 (1989).
    [Crossref]
  4. F. G. Celii, P. E. Pehrsson, H.-t. Wang, J. E. Butler, “Infrared Detection of Gaseous Species During the Filament-Assisted Growth of Diamond,” Appl. Phys. Lett. 52, 2043–2045 (1988).
    [Crossref]
  5. S. J. Harris, A. M. Weiner, T. A. Perry, “Measurement of Stable Species Present During Filament-Assisted Diamond Growth,” Appl. Phys. Lett. 53, 1605–1607 (1988).
    [Crossref]
  6. F. G. Celii, J. E. Butler, “Hydrogen Atom Detection in the Filament-Assisted Diamond Deposition Environment,” Appl. Phys. Lett. 54(11), 1031–1033 (1989).
    [Crossref]
  7. U. Meier, K. Kohse-Hoinghaus, T. Just, “H and O Atom Detection For Combustion Applications: Study of Quenching and Laser Photolysis Effects,” Chem. Phys. Lett. 126, 567–573 (1986).
    [Crossref]
  8. J. Bittner, K. Kohse-Hoinghaus, U. Meier, S. Kelm, T. Just, “Determination of Absolute H Atom Concentrations in Low-Pressure Flames by Two-Photon Laser-Excited Fluorescence,” Combust. Flame 71, 41–50 (1988).
    [Crossref]
  9. U. Meier, J. Bittner, K. Kohse-Hoinghaus, T. Just, “Discussion of Two-Photon Laser-Excited Fluorescence as a Method for Quantitative Detection of Oxygen Atoms in Flames,” in Twenty-Second Symposium (International) on Combustion (Combustion Institute, Pittsburgh, PA, 1988), pp. 1887–1896.
  10. J. Bittner, K. Kohse-Hoinghaus, U. Meier, T. Just, “Quenching of Two-Photon-Excited H(3s,3d) and O(3p3P2,1,0) Atoms by Rare Gases and Small Molecules,” Chem. Phys. Lett. 143, 571–576 (1988).
    [Crossref]
  11. U. Meier, K. Kohse-Hoinghaus, L. Schafer, C.-P. Klages, “H Atom Concentration Measurement by Two-Photon LIF Near a Heated Filament in a Hydrogen Environment,” in Technical Digest, Topical Meeting on Laser Applications to Chemical Analysis (Optical Society of America, Washington, DC, 1990), Vol. 2, pp. 100–102.
  12. L. Schafer, U. Bringmann, C.-P. Klages, U. Meier, K. Kohse-Hoinghaus, “Hydrogen Dissociation at Hot Filaments: Determination of Absolute Atomic Hydrogen Concentrations,” to be presented at the NATO Advanced Study Institute on Diamonds and Diamond-Like Coatings, Il Ciocco Castelvecchio Pascoli, Italy, 22 July–3 Aug. 1990 and manuscript in preparation.
  13. Bo-nian Dai, P. Lambropoulos, “Selective Ionization: Effects of Power Broadening, Laser Bandwidth, and Interaction Time on Selectivity,” Phys. Rev. A 34, 3954 (1986).
    [Crossref] [PubMed]
  14. J. Bittner, “Bestimmung von absoluten H- und O-Atomkonzen-trationen mit Laser-Induzierter Fluoreszenz (LIF) auf der Basis von Mehrphotonentechniken in Flammen,” Ph.D. Thesis, DLR/U. Heidelberg (Sept.1989).
  15. P. Lambropoulos, University of Southern California, Los Angeles; private communication (1987).
  16. J. E. M. Goldsmith, “Two-Photon-Excited Stimulated Emission from Atomic Hydrogen in Flames,” J. Opt. Soc. Am. B 6, 1979–1985 (1989).
    [Crossref]
  17. J. E. M. Goldsmith, “Two-Photon-Excited Stimulated Emission from Atomic Hydrogen in Flames,” in Technical Digest, Topical Meeting on Laser Applications to Chemical Analysis (Optical Society of America, Washington, DC, 1990), Vol. 2, pp. 103–105.
  18. E. Schnedler, “Description of Tungsten Transport Processes in Inert Gas Incandescent Lamps,” Philips J. Res. 38, 224–235 (1983).
  19. K. Blodgett, I. Langmuir, “Accommodation Coefficient of Hydrogen; a Sensitive Detector of Surface Films,” Phys. Rev. 40, 78–104 (1932) and references therein.
    [Crossref]
  20. F. Jansen, I. Chen, M. A. Machonkin, “On the Thermal Dissociation of Hydrogen,” J. Appl. Phys. 66, 5749–5755 (1989).
    [Crossref]
  21. J. B. Jeffries, SRI International; private communication (1990).
  22. P. Roth, T. Just, “Atom-Resonanzabsorptionsmessungen beim thermischen Zerfall von Methan hinter Stosswellen,” Ber. Bunsenges. Phys. Chem. 79, 682–686 (1975).
    [Crossref]
  23. S. J. Harris, A. M. Weiner, “Effects of Oxygen on Diamond Growth,” Appl. Phys. Lett. 55, 2179–2181 (1989).
    [Crossref]

1989 (6)

K. E. Spear, “Diamond-Ceramic Coating of the Future,” J. Am. Ceram. Soc. 72, 171–191 (1989).
[Crossref]

M. Frenklach, “The Role of Hydrogen in Vapor Deposition of Diamond,” J. Appl. Phys. 65, 5142–5149 (1989).
[Crossref]

F. G. Celii, J. E. Butler, “Hydrogen Atom Detection in the Filament-Assisted Diamond Deposition Environment,” Appl. Phys. Lett. 54(11), 1031–1033 (1989).
[Crossref]

J. E. M. Goldsmith, “Two-Photon-Excited Stimulated Emission from Atomic Hydrogen in Flames,” J. Opt. Soc. Am. B 6, 1979–1985 (1989).
[Crossref]

F. Jansen, I. Chen, M. A. Machonkin, “On the Thermal Dissociation of Hydrogen,” J. Appl. Phys. 66, 5749–5755 (1989).
[Crossref]

S. J. Harris, A. M. Weiner, “Effects of Oxygen on Diamond Growth,” Appl. Phys. Lett. 55, 2179–2181 (1989).
[Crossref]

1988 (5)

J. C. Angus, C. C. Hayman, “Low-Pressure, Metastable Growth of Diamond and ‘Diamondlike’ Phases,” Science 241, 913–921 (1988).
[Crossref] [PubMed]

J. Bittner, K. Kohse-Hoinghaus, U. Meier, S. Kelm, T. Just, “Determination of Absolute H Atom Concentrations in Low-Pressure Flames by Two-Photon Laser-Excited Fluorescence,” Combust. Flame 71, 41–50 (1988).
[Crossref]

J. Bittner, K. Kohse-Hoinghaus, U. Meier, T. Just, “Quenching of Two-Photon-Excited H(3s,3d) and O(3p3P2,1,0) Atoms by Rare Gases and Small Molecules,” Chem. Phys. Lett. 143, 571–576 (1988).
[Crossref]

F. G. Celii, P. E. Pehrsson, H.-t. Wang, J. E. Butler, “Infrared Detection of Gaseous Species During the Filament-Assisted Growth of Diamond,” Appl. Phys. Lett. 52, 2043–2045 (1988).
[Crossref]

S. J. Harris, A. M. Weiner, T. A. Perry, “Measurement of Stable Species Present During Filament-Assisted Diamond Growth,” Appl. Phys. Lett. 53, 1605–1607 (1988).
[Crossref]

1986 (2)

Bo-nian Dai, P. Lambropoulos, “Selective Ionization: Effects of Power Broadening, Laser Bandwidth, and Interaction Time on Selectivity,” Phys. Rev. A 34, 3954 (1986).
[Crossref] [PubMed]

U. Meier, K. Kohse-Hoinghaus, T. Just, “H and O Atom Detection For Combustion Applications: Study of Quenching and Laser Photolysis Effects,” Chem. Phys. Lett. 126, 567–573 (1986).
[Crossref]

1983 (1)

E. Schnedler, “Description of Tungsten Transport Processes in Inert Gas Incandescent Lamps,” Philips J. Res. 38, 224–235 (1983).

1975 (1)

P. Roth, T. Just, “Atom-Resonanzabsorptionsmessungen beim thermischen Zerfall von Methan hinter Stosswellen,” Ber. Bunsenges. Phys. Chem. 79, 682–686 (1975).
[Crossref]

1932 (1)

K. Blodgett, I. Langmuir, “Accommodation Coefficient of Hydrogen; a Sensitive Detector of Surface Films,” Phys. Rev. 40, 78–104 (1932) and references therein.
[Crossref]

Angus, J. C.

J. C. Angus, C. C. Hayman, “Low-Pressure, Metastable Growth of Diamond and ‘Diamondlike’ Phases,” Science 241, 913–921 (1988).
[Crossref] [PubMed]

Bittner, J.

J. Bittner, K. Kohse-Hoinghaus, U. Meier, S. Kelm, T. Just, “Determination of Absolute H Atom Concentrations in Low-Pressure Flames by Two-Photon Laser-Excited Fluorescence,” Combust. Flame 71, 41–50 (1988).
[Crossref]

J. Bittner, K. Kohse-Hoinghaus, U. Meier, T. Just, “Quenching of Two-Photon-Excited H(3s,3d) and O(3p3P2,1,0) Atoms by Rare Gases and Small Molecules,” Chem. Phys. Lett. 143, 571–576 (1988).
[Crossref]

U. Meier, J. Bittner, K. Kohse-Hoinghaus, T. Just, “Discussion of Two-Photon Laser-Excited Fluorescence as a Method for Quantitative Detection of Oxygen Atoms in Flames,” in Twenty-Second Symposium (International) on Combustion (Combustion Institute, Pittsburgh, PA, 1988), pp. 1887–1896.

J. Bittner, “Bestimmung von absoluten H- und O-Atomkonzen-trationen mit Laser-Induzierter Fluoreszenz (LIF) auf der Basis von Mehrphotonentechniken in Flammen,” Ph.D. Thesis, DLR/U. Heidelberg (Sept.1989).

Blodgett, K.

K. Blodgett, I. Langmuir, “Accommodation Coefficient of Hydrogen; a Sensitive Detector of Surface Films,” Phys. Rev. 40, 78–104 (1932) and references therein.
[Crossref]

Bringmann, U.

L. Schafer, U. Bringmann, C.-P. Klages, U. Meier, K. Kohse-Hoinghaus, “Hydrogen Dissociation at Hot Filaments: Determination of Absolute Atomic Hydrogen Concentrations,” to be presented at the NATO Advanced Study Institute on Diamonds and Diamond-Like Coatings, Il Ciocco Castelvecchio Pascoli, Italy, 22 July–3 Aug. 1990 and manuscript in preparation.

Butler, J. E.

F. G. Celii, J. E. Butler, “Hydrogen Atom Detection in the Filament-Assisted Diamond Deposition Environment,” Appl. Phys. Lett. 54(11), 1031–1033 (1989).
[Crossref]

F. G. Celii, P. E. Pehrsson, H.-t. Wang, J. E. Butler, “Infrared Detection of Gaseous Species During the Filament-Assisted Growth of Diamond,” Appl. Phys. Lett. 52, 2043–2045 (1988).
[Crossref]

Celii, F. G.

F. G. Celii, J. E. Butler, “Hydrogen Atom Detection in the Filament-Assisted Diamond Deposition Environment,” Appl. Phys. Lett. 54(11), 1031–1033 (1989).
[Crossref]

F. G. Celii, P. E. Pehrsson, H.-t. Wang, J. E. Butler, “Infrared Detection of Gaseous Species During the Filament-Assisted Growth of Diamond,” Appl. Phys. Lett. 52, 2043–2045 (1988).
[Crossref]

Chen, I.

F. Jansen, I. Chen, M. A. Machonkin, “On the Thermal Dissociation of Hydrogen,” J. Appl. Phys. 66, 5749–5755 (1989).
[Crossref]

Dai, Bo-nian

Bo-nian Dai, P. Lambropoulos, “Selective Ionization: Effects of Power Broadening, Laser Bandwidth, and Interaction Time on Selectivity,” Phys. Rev. A 34, 3954 (1986).
[Crossref] [PubMed]

Frenklach, M.

M. Frenklach, “The Role of Hydrogen in Vapor Deposition of Diamond,” J. Appl. Phys. 65, 5142–5149 (1989).
[Crossref]

Goldsmith, J. E. M.

J. E. M. Goldsmith, “Two-Photon-Excited Stimulated Emission from Atomic Hydrogen in Flames,” J. Opt. Soc. Am. B 6, 1979–1985 (1989).
[Crossref]

J. E. M. Goldsmith, “Two-Photon-Excited Stimulated Emission from Atomic Hydrogen in Flames,” in Technical Digest, Topical Meeting on Laser Applications to Chemical Analysis (Optical Society of America, Washington, DC, 1990), Vol. 2, pp. 103–105.

Harris, S. J.

S. J. Harris, A. M. Weiner, “Effects of Oxygen on Diamond Growth,” Appl. Phys. Lett. 55, 2179–2181 (1989).
[Crossref]

S. J. Harris, A. M. Weiner, T. A. Perry, “Measurement of Stable Species Present During Filament-Assisted Diamond Growth,” Appl. Phys. Lett. 53, 1605–1607 (1988).
[Crossref]

Hayman, C. C.

J. C. Angus, C. C. Hayman, “Low-Pressure, Metastable Growth of Diamond and ‘Diamondlike’ Phases,” Science 241, 913–921 (1988).
[Crossref] [PubMed]

Jansen, F.

F. Jansen, I. Chen, M. A. Machonkin, “On the Thermal Dissociation of Hydrogen,” J. Appl. Phys. 66, 5749–5755 (1989).
[Crossref]

Jeffries, J. B.

J. B. Jeffries, SRI International; private communication (1990).

Just, T.

J. Bittner, K. Kohse-Hoinghaus, U. Meier, S. Kelm, T. Just, “Determination of Absolute H Atom Concentrations in Low-Pressure Flames by Two-Photon Laser-Excited Fluorescence,” Combust. Flame 71, 41–50 (1988).
[Crossref]

J. Bittner, K. Kohse-Hoinghaus, U. Meier, T. Just, “Quenching of Two-Photon-Excited H(3s,3d) and O(3p3P2,1,0) Atoms by Rare Gases and Small Molecules,” Chem. Phys. Lett. 143, 571–576 (1988).
[Crossref]

U. Meier, K. Kohse-Hoinghaus, T. Just, “H and O Atom Detection For Combustion Applications: Study of Quenching and Laser Photolysis Effects,” Chem. Phys. Lett. 126, 567–573 (1986).
[Crossref]

P. Roth, T. Just, “Atom-Resonanzabsorptionsmessungen beim thermischen Zerfall von Methan hinter Stosswellen,” Ber. Bunsenges. Phys. Chem. 79, 682–686 (1975).
[Crossref]

U. Meier, J. Bittner, K. Kohse-Hoinghaus, T. Just, “Discussion of Two-Photon Laser-Excited Fluorescence as a Method for Quantitative Detection of Oxygen Atoms in Flames,” in Twenty-Second Symposium (International) on Combustion (Combustion Institute, Pittsburgh, PA, 1988), pp. 1887–1896.

Kelm, S.

J. Bittner, K. Kohse-Hoinghaus, U. Meier, S. Kelm, T. Just, “Determination of Absolute H Atom Concentrations in Low-Pressure Flames by Two-Photon Laser-Excited Fluorescence,” Combust. Flame 71, 41–50 (1988).
[Crossref]

Klages, C.-P.

L. Schafer, U. Bringmann, C.-P. Klages, U. Meier, K. Kohse-Hoinghaus, “Hydrogen Dissociation at Hot Filaments: Determination of Absolute Atomic Hydrogen Concentrations,” to be presented at the NATO Advanced Study Institute on Diamonds and Diamond-Like Coatings, Il Ciocco Castelvecchio Pascoli, Italy, 22 July–3 Aug. 1990 and manuscript in preparation.

U. Meier, K. Kohse-Hoinghaus, L. Schafer, C.-P. Klages, “H Atom Concentration Measurement by Two-Photon LIF Near a Heated Filament in a Hydrogen Environment,” in Technical Digest, Topical Meeting on Laser Applications to Chemical Analysis (Optical Society of America, Washington, DC, 1990), Vol. 2, pp. 100–102.

Kohse-Hoinghaus, K.

J. Bittner, K. Kohse-Hoinghaus, U. Meier, T. Just, “Quenching of Two-Photon-Excited H(3s,3d) and O(3p3P2,1,0) Atoms by Rare Gases and Small Molecules,” Chem. Phys. Lett. 143, 571–576 (1988).
[Crossref]

J. Bittner, K. Kohse-Hoinghaus, U. Meier, S. Kelm, T. Just, “Determination of Absolute H Atom Concentrations in Low-Pressure Flames by Two-Photon Laser-Excited Fluorescence,” Combust. Flame 71, 41–50 (1988).
[Crossref]

U. Meier, K. Kohse-Hoinghaus, T. Just, “H and O Atom Detection For Combustion Applications: Study of Quenching and Laser Photolysis Effects,” Chem. Phys. Lett. 126, 567–573 (1986).
[Crossref]

U. Meier, J. Bittner, K. Kohse-Hoinghaus, T. Just, “Discussion of Two-Photon Laser-Excited Fluorescence as a Method for Quantitative Detection of Oxygen Atoms in Flames,” in Twenty-Second Symposium (International) on Combustion (Combustion Institute, Pittsburgh, PA, 1988), pp. 1887–1896.

U. Meier, K. Kohse-Hoinghaus, L. Schafer, C.-P. Klages, “H Atom Concentration Measurement by Two-Photon LIF Near a Heated Filament in a Hydrogen Environment,” in Technical Digest, Topical Meeting on Laser Applications to Chemical Analysis (Optical Society of America, Washington, DC, 1990), Vol. 2, pp. 100–102.

L. Schafer, U. Bringmann, C.-P. Klages, U. Meier, K. Kohse-Hoinghaus, “Hydrogen Dissociation at Hot Filaments: Determination of Absolute Atomic Hydrogen Concentrations,” to be presented at the NATO Advanced Study Institute on Diamonds and Diamond-Like Coatings, Il Ciocco Castelvecchio Pascoli, Italy, 22 July–3 Aug. 1990 and manuscript in preparation.

Lambropoulos, P.

Bo-nian Dai, P. Lambropoulos, “Selective Ionization: Effects of Power Broadening, Laser Bandwidth, and Interaction Time on Selectivity,” Phys. Rev. A 34, 3954 (1986).
[Crossref] [PubMed]

P. Lambropoulos, University of Southern California, Los Angeles; private communication (1987).

Langmuir, I.

K. Blodgett, I. Langmuir, “Accommodation Coefficient of Hydrogen; a Sensitive Detector of Surface Films,” Phys. Rev. 40, 78–104 (1932) and references therein.
[Crossref]

Machonkin, M. A.

F. Jansen, I. Chen, M. A. Machonkin, “On the Thermal Dissociation of Hydrogen,” J. Appl. Phys. 66, 5749–5755 (1989).
[Crossref]

Meier, U.

J. Bittner, K. Kohse-Hoinghaus, U. Meier, T. Just, “Quenching of Two-Photon-Excited H(3s,3d) and O(3p3P2,1,0) Atoms by Rare Gases and Small Molecules,” Chem. Phys. Lett. 143, 571–576 (1988).
[Crossref]

J. Bittner, K. Kohse-Hoinghaus, U. Meier, S. Kelm, T. Just, “Determination of Absolute H Atom Concentrations in Low-Pressure Flames by Two-Photon Laser-Excited Fluorescence,” Combust. Flame 71, 41–50 (1988).
[Crossref]

U. Meier, K. Kohse-Hoinghaus, T. Just, “H and O Atom Detection For Combustion Applications: Study of Quenching and Laser Photolysis Effects,” Chem. Phys. Lett. 126, 567–573 (1986).
[Crossref]

U. Meier, K. Kohse-Hoinghaus, L. Schafer, C.-P. Klages, “H Atom Concentration Measurement by Two-Photon LIF Near a Heated Filament in a Hydrogen Environment,” in Technical Digest, Topical Meeting on Laser Applications to Chemical Analysis (Optical Society of America, Washington, DC, 1990), Vol. 2, pp. 100–102.

U. Meier, J. Bittner, K. Kohse-Hoinghaus, T. Just, “Discussion of Two-Photon Laser-Excited Fluorescence as a Method for Quantitative Detection of Oxygen Atoms in Flames,” in Twenty-Second Symposium (International) on Combustion (Combustion Institute, Pittsburgh, PA, 1988), pp. 1887–1896.

L. Schafer, U. Bringmann, C.-P. Klages, U. Meier, K. Kohse-Hoinghaus, “Hydrogen Dissociation at Hot Filaments: Determination of Absolute Atomic Hydrogen Concentrations,” to be presented at the NATO Advanced Study Institute on Diamonds and Diamond-Like Coatings, Il Ciocco Castelvecchio Pascoli, Italy, 22 July–3 Aug. 1990 and manuscript in preparation.

Pehrsson, P. E.

F. G. Celii, P. E. Pehrsson, H.-t. Wang, J. E. Butler, “Infrared Detection of Gaseous Species During the Filament-Assisted Growth of Diamond,” Appl. Phys. Lett. 52, 2043–2045 (1988).
[Crossref]

Perry, T. A.

S. J. Harris, A. M. Weiner, T. A. Perry, “Measurement of Stable Species Present During Filament-Assisted Diamond Growth,” Appl. Phys. Lett. 53, 1605–1607 (1988).
[Crossref]

Roth, P.

P. Roth, T. Just, “Atom-Resonanzabsorptionsmessungen beim thermischen Zerfall von Methan hinter Stosswellen,” Ber. Bunsenges. Phys. Chem. 79, 682–686 (1975).
[Crossref]

Schafer, L.

U. Meier, K. Kohse-Hoinghaus, L. Schafer, C.-P. Klages, “H Atom Concentration Measurement by Two-Photon LIF Near a Heated Filament in a Hydrogen Environment,” in Technical Digest, Topical Meeting on Laser Applications to Chemical Analysis (Optical Society of America, Washington, DC, 1990), Vol. 2, pp. 100–102.

L. Schafer, U. Bringmann, C.-P. Klages, U. Meier, K. Kohse-Hoinghaus, “Hydrogen Dissociation at Hot Filaments: Determination of Absolute Atomic Hydrogen Concentrations,” to be presented at the NATO Advanced Study Institute on Diamonds and Diamond-Like Coatings, Il Ciocco Castelvecchio Pascoli, Italy, 22 July–3 Aug. 1990 and manuscript in preparation.

Schnedler, E.

E. Schnedler, “Description of Tungsten Transport Processes in Inert Gas Incandescent Lamps,” Philips J. Res. 38, 224–235 (1983).

Spear, K. E.

K. E. Spear, “Diamond-Ceramic Coating of the Future,” J. Am. Ceram. Soc. 72, 171–191 (1989).
[Crossref]

Wang, H.-t.

F. G. Celii, P. E. Pehrsson, H.-t. Wang, J. E. Butler, “Infrared Detection of Gaseous Species During the Filament-Assisted Growth of Diamond,” Appl. Phys. Lett. 52, 2043–2045 (1988).
[Crossref]

Weiner, A. M.

S. J. Harris, A. M. Weiner, “Effects of Oxygen on Diamond Growth,” Appl. Phys. Lett. 55, 2179–2181 (1989).
[Crossref]

S. J. Harris, A. M. Weiner, T. A. Perry, “Measurement of Stable Species Present During Filament-Assisted Diamond Growth,” Appl. Phys. Lett. 53, 1605–1607 (1988).
[Crossref]

Appl. Phys. Lett. (4)

F. G. Celii, P. E. Pehrsson, H.-t. Wang, J. E. Butler, “Infrared Detection of Gaseous Species During the Filament-Assisted Growth of Diamond,” Appl. Phys. Lett. 52, 2043–2045 (1988).
[Crossref]

S. J. Harris, A. M. Weiner, T. A. Perry, “Measurement of Stable Species Present During Filament-Assisted Diamond Growth,” Appl. Phys. Lett. 53, 1605–1607 (1988).
[Crossref]

F. G. Celii, J. E. Butler, “Hydrogen Atom Detection in the Filament-Assisted Diamond Deposition Environment,” Appl. Phys. Lett. 54(11), 1031–1033 (1989).
[Crossref]

S. J. Harris, A. M. Weiner, “Effects of Oxygen on Diamond Growth,” Appl. Phys. Lett. 55, 2179–2181 (1989).
[Crossref]

Ber. Bunsenges. Phys. Chem. (1)

P. Roth, T. Just, “Atom-Resonanzabsorptionsmessungen beim thermischen Zerfall von Methan hinter Stosswellen,” Ber. Bunsenges. Phys. Chem. 79, 682–686 (1975).
[Crossref]

Chem. Phys. Lett. (2)

U. Meier, K. Kohse-Hoinghaus, T. Just, “H and O Atom Detection For Combustion Applications: Study of Quenching and Laser Photolysis Effects,” Chem. Phys. Lett. 126, 567–573 (1986).
[Crossref]

J. Bittner, K. Kohse-Hoinghaus, U. Meier, T. Just, “Quenching of Two-Photon-Excited H(3s,3d) and O(3p3P2,1,0) Atoms by Rare Gases and Small Molecules,” Chem. Phys. Lett. 143, 571–576 (1988).
[Crossref]

Combust. Flame (1)

J. Bittner, K. Kohse-Hoinghaus, U. Meier, S. Kelm, T. Just, “Determination of Absolute H Atom Concentrations in Low-Pressure Flames by Two-Photon Laser-Excited Fluorescence,” Combust. Flame 71, 41–50 (1988).
[Crossref]

J. Am. Ceram. Soc. (1)

K. E. Spear, “Diamond-Ceramic Coating of the Future,” J. Am. Ceram. Soc. 72, 171–191 (1989).
[Crossref]

J. Appl. Phys. (2)

M. Frenklach, “The Role of Hydrogen in Vapor Deposition of Diamond,” J. Appl. Phys. 65, 5142–5149 (1989).
[Crossref]

F. Jansen, I. Chen, M. A. Machonkin, “On the Thermal Dissociation of Hydrogen,” J. Appl. Phys. 66, 5749–5755 (1989).
[Crossref]

J. Opt. Soc. Am. B (1)

Philips J. Res. (1)

E. Schnedler, “Description of Tungsten Transport Processes in Inert Gas Incandescent Lamps,” Philips J. Res. 38, 224–235 (1983).

Phys. Rev. (1)

K. Blodgett, I. Langmuir, “Accommodation Coefficient of Hydrogen; a Sensitive Detector of Surface Films,” Phys. Rev. 40, 78–104 (1932) and references therein.
[Crossref]

Phys. Rev. A (1)

Bo-nian Dai, P. Lambropoulos, “Selective Ionization: Effects of Power Broadening, Laser Bandwidth, and Interaction Time on Selectivity,” Phys. Rev. A 34, 3954 (1986).
[Crossref] [PubMed]

Science (1)

J. C. Angus, C. C. Hayman, “Low-Pressure, Metastable Growth of Diamond and ‘Diamondlike’ Phases,” Science 241, 913–921 (1988).
[Crossref] [PubMed]

Other (7)

J. Bittner, “Bestimmung von absoluten H- und O-Atomkonzen-trationen mit Laser-Induzierter Fluoreszenz (LIF) auf der Basis von Mehrphotonentechniken in Flammen,” Ph.D. Thesis, DLR/U. Heidelberg (Sept.1989).

P. Lambropoulos, University of Southern California, Los Angeles; private communication (1987).

J. E. M. Goldsmith, “Two-Photon-Excited Stimulated Emission from Atomic Hydrogen in Flames,” in Technical Digest, Topical Meeting on Laser Applications to Chemical Analysis (Optical Society of America, Washington, DC, 1990), Vol. 2, pp. 103–105.

J. B. Jeffries, SRI International; private communication (1990).

U. Meier, K. Kohse-Hoinghaus, L. Schafer, C.-P. Klages, “H Atom Concentration Measurement by Two-Photon LIF Near a Heated Filament in a Hydrogen Environment,” in Technical Digest, Topical Meeting on Laser Applications to Chemical Analysis (Optical Society of America, Washington, DC, 1990), Vol. 2, pp. 100–102.

L. Schafer, U. Bringmann, C.-P. Klages, U. Meier, K. Kohse-Hoinghaus, “Hydrogen Dissociation at Hot Filaments: Determination of Absolute Atomic Hydrogen Concentrations,” to be presented at the NATO Advanced Study Institute on Diamonds and Diamond-Like Coatings, Il Ciocco Castelvecchio Pascoli, Italy, 22 July–3 Aug. 1990 and manuscript in preparation.

U. Meier, J. Bittner, K. Kohse-Hoinghaus, T. Just, “Discussion of Two-Photon Laser-Excited Fluorescence as a Method for Quantitative Detection of Oxygen Atoms in Flames,” in Twenty-Second Symposium (International) on Combustion (Combustion Institute, Pittsburgh, PA, 1988), pp. 1887–1896.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental arrangement: PD, photodiode; PM, photomultiplier; FD, frequency doubling crystal.

Fig. 2
Fig. 2

Calibration curve for H-atom fluorescence signal. The NO2 Fig. concentration at the abscissa intercept as given by the extrapolated is equal to the H atom concentration corresponding to straight line the signal intensity at the ordinate intercept.

Fig. 3
Fig. 3

Fluorescence signal (- - - ◆ - - -) and H-atom concentration (— ● —) as a function of pressure in the CVD reactor; tantalum filament, 2-mm diameter, T = 2540 K; ⋯ ▲ ⋯: calculated temperature at measurement point (right ordinate).

Fig. 4
Fig. 4

Radial concentration profiles at different pressures: tantalum filament, 2-mm diameter: ◇, 1.5 mbar, T = 2640 K; ○, 10 mbar, T = 2575 K; ●, 30 mbar, T = 2540 K; □, 50 mbar, T = 2530 K. Dotted line, temperature profile for 30 mbar; the temperatures for 10 and 50 mbar were similar.

Fig. 5
Fig. 5

Radial concentration profiles at different filament temperatures: - - - ■ - - -, T = 2620 K;— ● —, T = 2540 K; ⋯ ▼ ⋯, T = 2450 K. Tantalum filament, 2-mm diameter; p = 30 mbar.

Fig. 6
Fig. 6

Radial concentration profiles for different filament diameters: tantalum wire, p = 30 mbar, 5% CH4: ○, 2-mm diameter, T = 2700 K; △, 1-mm diameter, T = 2530 K; □, 0.3-mm diameter, T = 2700 K.

Fig. 7
Fig. 7

Radial concentration profiles for different filament materials. Diameter, 2 mm; p = 30 mbar, CH4 addition 5%: ○, tantalum; △, iridium.

Fig. 8
Fig. 8

H-atom concentrations as a function of fraction CH4 mixture fraction: p = 30 mbar; tantalum filament, 2-mm diameter; distance from filament, 4.4 mm; ■, taken immediately after termination of CH4 addition.

Fig. 9
Fig. 9

Effect of CH4 addition on H atom-profiles; tantalum wire, 2-mm diameter, p = 30 mbar; ■, 0% CH4, filament temperature, 2620 K; ●, 5% CH4, filament temperature, 2700 K.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

[ H ] CVD = [ H ] DFR × C Q × C D × I CVD / I DFR .
Ω = - + Ω ( δ ) × D ( δ ) d δ .
D ( δ ) = 2 / ν D × ln 2 / π × exp { - ln 2 × [ δ / ν D ] 2 } ,

Metrics