Abstract

Laser-induced fluorescence in oxygen, in combination with Raman scattering, is shown to be an accurate means by which temperature, density, and their fluctuations owing to turbulence can be measured in air flows associated with high speed wind tunnels. For temperatures above 60 K and densities above 0.01 amagat, the uncertainties in the temperature and density measurements can be <2%, if the signal uncertainties are dominated by photon statistical noise. The measurements are unaffected by collisional quenching and can be achieved with laser fluences for which nonlinear effects are insignificant. Temperature measurements using laser-induced fluorescence alone have been demonstrated at known densities in the range of low temperatures and densities which are expected in a hypersonic wind tunnel.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. A. Massey, C. J. Lemon, “Feasibility of Measuring Temperature and Density Fluctuations in Air Using Laser-Induced O2 Fluorescence,” IEEE J. Quantum Electron. QE-20, 454–457 (1984).
    [CrossRef]
  2. M. P. Lee, P. H. Paul, R. K. Hanson, “Laser-Fluorescence Imaging of O2 in Combustion Flows Using an ArF Laser,” Opt. Lett. 11, 7–9 (1986).
    [CrossRef] [PubMed]
  3. M. P. Lee, P. H. Paul, R. K. Hanson, “Quantitative Imaging of Temperature Fields in Air Using Planar Laser-Induced Fluorescence of O2,” Opt. Lett. 12, 75–77 (1987).
    [CrossRef] [PubMed]
  4. R. B. Miles, J. J. Connors, P. J. Howard, E. C. Markovitz, G. J. Roth, “Proposed Single-Pulse Two-Dimensional Temperature and Density Measurements of Oxygen and Air,” Opt. Lett. 13, 195–197 (1988).
    [CrossRef] [PubMed]
  5. G. Laufer, R. L. McKenzie, W. M. Huo, “Radiative Processes in Air Excited by an ArF Laser,” Opt. Lett. 13, 99–101 (1988).
    [CrossRef] [PubMed]
  6. B. R. Lewis, L. Berzins, J. H. Carver, S. T. Gibson, “Rotational Variation of Predissociation Linewidth in the Schumann-Runge Bands of 16O2,” J. Quant. Spectrosc. Radiat. Transfer 36, 187–207 (1986).
    [CrossRef]
  7. K. P. Gross, R. L. McKenzie, P. Logan, “Measurements of Temperature, Density, Pressure, and Their Fluctuations in Supersonic Turbulence Using Laser-Induced Fluorescence,” Exp. Fluids 5, 372–380 (1987).
    [CrossRef]
  8. M. Smith, A. Smits, R. B. Miles, “Compressible Boundary-Layer Density Cross Sections by UV Rayleigh Scattering,” Opt. Lett. 14, 916–918 (1989).
    [CrossRef] [PubMed]
  9. W. K. Bischel, G. Black, “Wavelength Dependence of Raman Scattering Cross Sections from 200–600 nm,” AIP Conf. Proc. 100, 181–187 (1983).
    [CrossRef]
  10. A. S. C. Cheung, K. Yoshino, W. H. Parkinson, D. E. Freeman, “Molecular Spectroscopic Constants of O2(B3Σu-): The Upper State of the Schumann-Runge Band,” J. Mol. Spectrosc. 119, 1–10 (1986).
    [CrossRef]
  11. L. Veseth, A. Lofthus, “Fine Structure and Centrifugal Distortion in the Electronic and Microwave Spectra of O2 and SO,” Mol. Phys. 27, 511–519 (1974).
    [CrossRef]
  12. K. Yoshino, D. E. Freeman, W. H. Parkinson, “Atlas of the Schumann-Runge Absorption Bands of O2 in the Wavelength Region 175–205 nm,” J. Phys. Chem. Ref. Data 13, 207–227 (1984).
    [CrossRef]
  13. Y. Endo, M. Mizushima, “Microwave Resonance Lines of 16O2 in its Electronic Ground State (X3Σg-),” Jpn. J. Appl. Phys. 21, L379–380 (1982).
    [CrossRef]
  14. W. M. Huo, C. W. Bauschlicher, “Rotational Dependence of the Schumann-Runge Band Oscillator Strengths of O2,” in Proceedings, Eighth Annual West Coast 6 Conference on Theoretical Chemistry, City (26, Mar. 1986), paper TP8.
  15. P. H. Krupenie, “The Spectrum of Molecular Oxygen,” J. Phys. Chem. Ref. Data 1, 423–534 (1972).
    [CrossRef]
  16. K. Yoshino, D. E. Freeman, J. R. Esmond, W. H. Parkinson, “High Resolution Absorption Cross Section Measurements and Band Oscillator Strengths of the (1,0)–(12,0) Schumann-Runge Bands of O2,” Planet. Space Sci. 31, 339–353 (1983).
    [CrossRef]
  17. M. W. P. Cann et al., “High Resolution Atmospheric Transmission Calculations Down to 28.7 km in the 200–243-nm Spectral Range,” Appl. Opt. 18, 964–977 (1979).
    [CrossRef] [PubMed]
  18. H. A. Gebbie, W. J. Burroughs, J. A. Robb, G. R. Bird, “Observations of the Magnetic Dipole Rotation Spectrum of Oxygen,” Nature London 212, 66–67 (1966).
    [CrossRef]
  19. D. Marcuse, Engineering Quantum Electrodynamics (Harcourt, Brace & World, New York, 1970).
  20. K. Shibuya, F. Stuhl, “Single Vibronic Emissions from NO B2π (v′ = 7) and O2B3Σu- (v′=4) Excited by 193-nm ArF Laser,” J. Chem. Phys. 76, 1184–1186 (1982).
    [CrossRef]
  21. W. F. Murphy, “The Ro-Vibrational Raman Spectrum of Water Vapor ν2 and 2ν2,” Mol. Phys. 33, 1701–1714 (1977).
    [CrossRef]
  22. P. G. Wilkinson, H. L. Johnston, “The Absorption Spectra of Methane, Carbon Dioxide, Water Vapor, and Ethylene in the Vacuum Ultraviolet,” J. Chem. Phys. 18, 190–193 (1950).
    [CrossRef]

1989 (1)

1988 (2)

1987 (2)

M. P. Lee, P. H. Paul, R. K. Hanson, “Quantitative Imaging of Temperature Fields in Air Using Planar Laser-Induced Fluorescence of O2,” Opt. Lett. 12, 75–77 (1987).
[CrossRef] [PubMed]

K. P. Gross, R. L. McKenzie, P. Logan, “Measurements of Temperature, Density, Pressure, and Their Fluctuations in Supersonic Turbulence Using Laser-Induced Fluorescence,” Exp. Fluids 5, 372–380 (1987).
[CrossRef]

1986 (3)

B. R. Lewis, L. Berzins, J. H. Carver, S. T. Gibson, “Rotational Variation of Predissociation Linewidth in the Schumann-Runge Bands of 16O2,” J. Quant. Spectrosc. Radiat. Transfer 36, 187–207 (1986).
[CrossRef]

M. P. Lee, P. H. Paul, R. K. Hanson, “Laser-Fluorescence Imaging of O2 in Combustion Flows Using an ArF Laser,” Opt. Lett. 11, 7–9 (1986).
[CrossRef] [PubMed]

A. S. C. Cheung, K. Yoshino, W. H. Parkinson, D. E. Freeman, “Molecular Spectroscopic Constants of O2(B3Σu-): The Upper State of the Schumann-Runge Band,” J. Mol. Spectrosc. 119, 1–10 (1986).
[CrossRef]

1984 (2)

K. Yoshino, D. E. Freeman, W. H. Parkinson, “Atlas of the Schumann-Runge Absorption Bands of O2 in the Wavelength Region 175–205 nm,” J. Phys. Chem. Ref. Data 13, 207–227 (1984).
[CrossRef]

G. A. Massey, C. J. Lemon, “Feasibility of Measuring Temperature and Density Fluctuations in Air Using Laser-Induced O2 Fluorescence,” IEEE J. Quantum Electron. QE-20, 454–457 (1984).
[CrossRef]

1983 (2)

W. K. Bischel, G. Black, “Wavelength Dependence of Raman Scattering Cross Sections from 200–600 nm,” AIP Conf. Proc. 100, 181–187 (1983).
[CrossRef]

K. Yoshino, D. E. Freeman, J. R. Esmond, W. H. Parkinson, “High Resolution Absorption Cross Section Measurements and Band Oscillator Strengths of the (1,0)–(12,0) Schumann-Runge Bands of O2,” Planet. Space Sci. 31, 339–353 (1983).
[CrossRef]

1982 (2)

K. Shibuya, F. Stuhl, “Single Vibronic Emissions from NO B2π (v′ = 7) and O2B3Σu- (v′=4) Excited by 193-nm ArF Laser,” J. Chem. Phys. 76, 1184–1186 (1982).
[CrossRef]

Y. Endo, M. Mizushima, “Microwave Resonance Lines of 16O2 in its Electronic Ground State (X3Σg-),” Jpn. J. Appl. Phys. 21, L379–380 (1982).
[CrossRef]

1979 (1)

1977 (1)

W. F. Murphy, “The Ro-Vibrational Raman Spectrum of Water Vapor ν2 and 2ν2,” Mol. Phys. 33, 1701–1714 (1977).
[CrossRef]

1974 (1)

L. Veseth, A. Lofthus, “Fine Structure and Centrifugal Distortion in the Electronic and Microwave Spectra of O2 and SO,” Mol. Phys. 27, 511–519 (1974).
[CrossRef]

1972 (1)

P. H. Krupenie, “The Spectrum of Molecular Oxygen,” J. Phys. Chem. Ref. Data 1, 423–534 (1972).
[CrossRef]

1966 (1)

H. A. Gebbie, W. J. Burroughs, J. A. Robb, G. R. Bird, “Observations of the Magnetic Dipole Rotation Spectrum of Oxygen,” Nature London 212, 66–67 (1966).
[CrossRef]

1950 (1)

P. G. Wilkinson, H. L. Johnston, “The Absorption Spectra of Methane, Carbon Dioxide, Water Vapor, and Ethylene in the Vacuum Ultraviolet,” J. Chem. Phys. 18, 190–193 (1950).
[CrossRef]

Bauschlicher, C. W.

W. M. Huo, C. W. Bauschlicher, “Rotational Dependence of the Schumann-Runge Band Oscillator Strengths of O2,” in Proceedings, Eighth Annual West Coast 6 Conference on Theoretical Chemistry, City (26, Mar. 1986), paper TP8.

Berzins, L.

B. R. Lewis, L. Berzins, J. H. Carver, S. T. Gibson, “Rotational Variation of Predissociation Linewidth in the Schumann-Runge Bands of 16O2,” J. Quant. Spectrosc. Radiat. Transfer 36, 187–207 (1986).
[CrossRef]

Bird, G. R.

H. A. Gebbie, W. J. Burroughs, J. A. Robb, G. R. Bird, “Observations of the Magnetic Dipole Rotation Spectrum of Oxygen,” Nature London 212, 66–67 (1966).
[CrossRef]

Bischel, W. K.

W. K. Bischel, G. Black, “Wavelength Dependence of Raman Scattering Cross Sections from 200–600 nm,” AIP Conf. Proc. 100, 181–187 (1983).
[CrossRef]

Black, G.

W. K. Bischel, G. Black, “Wavelength Dependence of Raman Scattering Cross Sections from 200–600 nm,” AIP Conf. Proc. 100, 181–187 (1983).
[CrossRef]

Burroughs, W. J.

H. A. Gebbie, W. J. Burroughs, J. A. Robb, G. R. Bird, “Observations of the Magnetic Dipole Rotation Spectrum of Oxygen,” Nature London 212, 66–67 (1966).
[CrossRef]

Cann, M. W. P.

Carver, J. H.

B. R. Lewis, L. Berzins, J. H. Carver, S. T. Gibson, “Rotational Variation of Predissociation Linewidth in the Schumann-Runge Bands of 16O2,” J. Quant. Spectrosc. Radiat. Transfer 36, 187–207 (1986).
[CrossRef]

Cheung, A. S. C.

A. S. C. Cheung, K. Yoshino, W. H. Parkinson, D. E. Freeman, “Molecular Spectroscopic Constants of O2(B3Σu-): The Upper State of the Schumann-Runge Band,” J. Mol. Spectrosc. 119, 1–10 (1986).
[CrossRef]

Connors, J. J.

Endo, Y.

Y. Endo, M. Mizushima, “Microwave Resonance Lines of 16O2 in its Electronic Ground State (X3Σg-),” Jpn. J. Appl. Phys. 21, L379–380 (1982).
[CrossRef]

Esmond, J. R.

K. Yoshino, D. E. Freeman, J. R. Esmond, W. H. Parkinson, “High Resolution Absorption Cross Section Measurements and Band Oscillator Strengths of the (1,0)–(12,0) Schumann-Runge Bands of O2,” Planet. Space Sci. 31, 339–353 (1983).
[CrossRef]

Freeman, D. E.

A. S. C. Cheung, K. Yoshino, W. H. Parkinson, D. E. Freeman, “Molecular Spectroscopic Constants of O2(B3Σu-): The Upper State of the Schumann-Runge Band,” J. Mol. Spectrosc. 119, 1–10 (1986).
[CrossRef]

K. Yoshino, D. E. Freeman, W. H. Parkinson, “Atlas of the Schumann-Runge Absorption Bands of O2 in the Wavelength Region 175–205 nm,” J. Phys. Chem. Ref. Data 13, 207–227 (1984).
[CrossRef]

K. Yoshino, D. E. Freeman, J. R. Esmond, W. H. Parkinson, “High Resolution Absorption Cross Section Measurements and Band Oscillator Strengths of the (1,0)–(12,0) Schumann-Runge Bands of O2,” Planet. Space Sci. 31, 339–353 (1983).
[CrossRef]

Gebbie, H. A.

H. A. Gebbie, W. J. Burroughs, J. A. Robb, G. R. Bird, “Observations of the Magnetic Dipole Rotation Spectrum of Oxygen,” Nature London 212, 66–67 (1966).
[CrossRef]

Gibson, S. T.

B. R. Lewis, L. Berzins, J. H. Carver, S. T. Gibson, “Rotational Variation of Predissociation Linewidth in the Schumann-Runge Bands of 16O2,” J. Quant. Spectrosc. Radiat. Transfer 36, 187–207 (1986).
[CrossRef]

Gross, K. P.

K. P. Gross, R. L. McKenzie, P. Logan, “Measurements of Temperature, Density, Pressure, and Their Fluctuations in Supersonic Turbulence Using Laser-Induced Fluorescence,” Exp. Fluids 5, 372–380 (1987).
[CrossRef]

Hanson, R. K.

Howard, P. J.

Huo, W. M.

G. Laufer, R. L. McKenzie, W. M. Huo, “Radiative Processes in Air Excited by an ArF Laser,” Opt. Lett. 13, 99–101 (1988).
[CrossRef] [PubMed]

W. M. Huo, C. W. Bauschlicher, “Rotational Dependence of the Schumann-Runge Band Oscillator Strengths of O2,” in Proceedings, Eighth Annual West Coast 6 Conference on Theoretical Chemistry, City (26, Mar. 1986), paper TP8.

Johnston, H. L.

P. G. Wilkinson, H. L. Johnston, “The Absorption Spectra of Methane, Carbon Dioxide, Water Vapor, and Ethylene in the Vacuum Ultraviolet,” J. Chem. Phys. 18, 190–193 (1950).
[CrossRef]

Krupenie, P. H.

P. H. Krupenie, “The Spectrum of Molecular Oxygen,” J. Phys. Chem. Ref. Data 1, 423–534 (1972).
[CrossRef]

Laufer, G.

Lee, M. P.

Lemon, C. J.

G. A. Massey, C. J. Lemon, “Feasibility of Measuring Temperature and Density Fluctuations in Air Using Laser-Induced O2 Fluorescence,” IEEE J. Quantum Electron. QE-20, 454–457 (1984).
[CrossRef]

Lewis, B. R.

B. R. Lewis, L. Berzins, J. H. Carver, S. T. Gibson, “Rotational Variation of Predissociation Linewidth in the Schumann-Runge Bands of 16O2,” J. Quant. Spectrosc. Radiat. Transfer 36, 187–207 (1986).
[CrossRef]

Lofthus, A.

L. Veseth, A. Lofthus, “Fine Structure and Centrifugal Distortion in the Electronic and Microwave Spectra of O2 and SO,” Mol. Phys. 27, 511–519 (1974).
[CrossRef]

Logan, P.

K. P. Gross, R. L. McKenzie, P. Logan, “Measurements of Temperature, Density, Pressure, and Their Fluctuations in Supersonic Turbulence Using Laser-Induced Fluorescence,” Exp. Fluids 5, 372–380 (1987).
[CrossRef]

Marcuse, D.

D. Marcuse, Engineering Quantum Electrodynamics (Harcourt, Brace & World, New York, 1970).

Markovitz, E. C.

Massey, G. A.

G. A. Massey, C. J. Lemon, “Feasibility of Measuring Temperature and Density Fluctuations in Air Using Laser-Induced O2 Fluorescence,” IEEE J. Quantum Electron. QE-20, 454–457 (1984).
[CrossRef]

McKenzie, R. L.

G. Laufer, R. L. McKenzie, W. M. Huo, “Radiative Processes in Air Excited by an ArF Laser,” Opt. Lett. 13, 99–101 (1988).
[CrossRef] [PubMed]

K. P. Gross, R. L. McKenzie, P. Logan, “Measurements of Temperature, Density, Pressure, and Their Fluctuations in Supersonic Turbulence Using Laser-Induced Fluorescence,” Exp. Fluids 5, 372–380 (1987).
[CrossRef]

Miles, R. B.

Mizushima, M.

Y. Endo, M. Mizushima, “Microwave Resonance Lines of 16O2 in its Electronic Ground State (X3Σg-),” Jpn. J. Appl. Phys. 21, L379–380 (1982).
[CrossRef]

Murphy, W. F.

W. F. Murphy, “The Ro-Vibrational Raman Spectrum of Water Vapor ν2 and 2ν2,” Mol. Phys. 33, 1701–1714 (1977).
[CrossRef]

Parkinson, W. H.

A. S. C. Cheung, K. Yoshino, W. H. Parkinson, D. E. Freeman, “Molecular Spectroscopic Constants of O2(B3Σu-): The Upper State of the Schumann-Runge Band,” J. Mol. Spectrosc. 119, 1–10 (1986).
[CrossRef]

K. Yoshino, D. E. Freeman, W. H. Parkinson, “Atlas of the Schumann-Runge Absorption Bands of O2 in the Wavelength Region 175–205 nm,” J. Phys. Chem. Ref. Data 13, 207–227 (1984).
[CrossRef]

K. Yoshino, D. E. Freeman, J. R. Esmond, W. H. Parkinson, “High Resolution Absorption Cross Section Measurements and Band Oscillator Strengths of the (1,0)–(12,0) Schumann-Runge Bands of O2,” Planet. Space Sci. 31, 339–353 (1983).
[CrossRef]

Paul, P. H.

Robb, J. A.

H. A. Gebbie, W. J. Burroughs, J. A. Robb, G. R. Bird, “Observations of the Magnetic Dipole Rotation Spectrum of Oxygen,” Nature London 212, 66–67 (1966).
[CrossRef]

Roth, G. J.

Shibuya, K.

K. Shibuya, F. Stuhl, “Single Vibronic Emissions from NO B2π (v′ = 7) and O2B3Σu- (v′=4) Excited by 193-nm ArF Laser,” J. Chem. Phys. 76, 1184–1186 (1982).
[CrossRef]

Smith, M.

Smits, A.

Stuhl, F.

K. Shibuya, F. Stuhl, “Single Vibronic Emissions from NO B2π (v′ = 7) and O2B3Σu- (v′=4) Excited by 193-nm ArF Laser,” J. Chem. Phys. 76, 1184–1186 (1982).
[CrossRef]

Veseth, L.

L. Veseth, A. Lofthus, “Fine Structure and Centrifugal Distortion in the Electronic and Microwave Spectra of O2 and SO,” Mol. Phys. 27, 511–519 (1974).
[CrossRef]

Wilkinson, P. G.

P. G. Wilkinson, H. L. Johnston, “The Absorption Spectra of Methane, Carbon Dioxide, Water Vapor, and Ethylene in the Vacuum Ultraviolet,” J. Chem. Phys. 18, 190–193 (1950).
[CrossRef]

Yoshino, K.

A. S. C. Cheung, K. Yoshino, W. H. Parkinson, D. E. Freeman, “Molecular Spectroscopic Constants of O2(B3Σu-): The Upper State of the Schumann-Runge Band,” J. Mol. Spectrosc. 119, 1–10 (1986).
[CrossRef]

K. Yoshino, D. E. Freeman, W. H. Parkinson, “Atlas of the Schumann-Runge Absorption Bands of O2 in the Wavelength Region 175–205 nm,” J. Phys. Chem. Ref. Data 13, 207–227 (1984).
[CrossRef]

K. Yoshino, D. E. Freeman, J. R. Esmond, W. H. Parkinson, “High Resolution Absorption Cross Section Measurements and Band Oscillator Strengths of the (1,0)–(12,0) Schumann-Runge Bands of O2,” Planet. Space Sci. 31, 339–353 (1983).
[CrossRef]

AIP Conf. Proc. (1)

W. K. Bischel, G. Black, “Wavelength Dependence of Raman Scattering Cross Sections from 200–600 nm,” AIP Conf. Proc. 100, 181–187 (1983).
[CrossRef]

Appl. Opt. (1)

Exp. Fluids (1)

K. P. Gross, R. L. McKenzie, P. Logan, “Measurements of Temperature, Density, Pressure, and Their Fluctuations in Supersonic Turbulence Using Laser-Induced Fluorescence,” Exp. Fluids 5, 372–380 (1987).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. A. Massey, C. J. Lemon, “Feasibility of Measuring Temperature and Density Fluctuations in Air Using Laser-Induced O2 Fluorescence,” IEEE J. Quantum Electron. QE-20, 454–457 (1984).
[CrossRef]

J. Chem. Phys. (2)

K. Shibuya, F. Stuhl, “Single Vibronic Emissions from NO B2π (v′ = 7) and O2B3Σu- (v′=4) Excited by 193-nm ArF Laser,” J. Chem. Phys. 76, 1184–1186 (1982).
[CrossRef]

P. G. Wilkinson, H. L. Johnston, “The Absorption Spectra of Methane, Carbon Dioxide, Water Vapor, and Ethylene in the Vacuum Ultraviolet,” J. Chem. Phys. 18, 190–193 (1950).
[CrossRef]

J. Mol. Spectrosc. (1)

A. S. C. Cheung, K. Yoshino, W. H. Parkinson, D. E. Freeman, “Molecular Spectroscopic Constants of O2(B3Σu-): The Upper State of the Schumann-Runge Band,” J. Mol. Spectrosc. 119, 1–10 (1986).
[CrossRef]

J. Phys. Chem. Ref. Data (2)

K. Yoshino, D. E. Freeman, W. H. Parkinson, “Atlas of the Schumann-Runge Absorption Bands of O2 in the Wavelength Region 175–205 nm,” J. Phys. Chem. Ref. Data 13, 207–227 (1984).
[CrossRef]

P. H. Krupenie, “The Spectrum of Molecular Oxygen,” J. Phys. Chem. Ref. Data 1, 423–534 (1972).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

B. R. Lewis, L. Berzins, J. H. Carver, S. T. Gibson, “Rotational Variation of Predissociation Linewidth in the Schumann-Runge Bands of 16O2,” J. Quant. Spectrosc. Radiat. Transfer 36, 187–207 (1986).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Endo, M. Mizushima, “Microwave Resonance Lines of 16O2 in its Electronic Ground State (X3Σg-),” Jpn. J. Appl. Phys. 21, L379–380 (1982).
[CrossRef]

Mol. Phys. (2)

W. F. Murphy, “The Ro-Vibrational Raman Spectrum of Water Vapor ν2 and 2ν2,” Mol. Phys. 33, 1701–1714 (1977).
[CrossRef]

L. Veseth, A. Lofthus, “Fine Structure and Centrifugal Distortion in the Electronic and Microwave Spectra of O2 and SO,” Mol. Phys. 27, 511–519 (1974).
[CrossRef]

Nature London (1)

H. A. Gebbie, W. J. Burroughs, J. A. Robb, G. R. Bird, “Observations of the Magnetic Dipole Rotation Spectrum of Oxygen,” Nature London 212, 66–67 (1966).
[CrossRef]

Opt. Lett. (5)

Planet. Space Sci. (1)

K. Yoshino, D. E. Freeman, J. R. Esmond, W. H. Parkinson, “High Resolution Absorption Cross Section Measurements and Band Oscillator Strengths of the (1,0)–(12,0) Schumann-Runge Bands of O2,” Planet. Space Sci. 31, 339–353 (1983).
[CrossRef]

Other (2)

W. M. Huo, C. W. Bauschlicher, “Rotational Dependence of the Schumann-Runge Band Oscillator Strengths of O2,” in Proceedings, Eighth Annual West Coast 6 Conference on Theoretical Chemistry, City (26, Mar. 1986), paper TP8.

D. Marcuse, Engineering Quantum Electrodynamics (Harcourt, Brace & World, New York, 1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Energy transfer paths for laser-induced excitation and fluorescence of molecular oxygen.

Fig. 2
Fig. 2

Normalized excitation spectrum of air at 1 atm and 297 K by a narrowband ArF laser.

Fig. 3
Fig. 3

Dependence of total fluorescence and Raman signals on laser fluence. The laser was tuned to the peak of the O2 v′(4) ← v″(0) P19 transition in air at T = 296 K and 1 atm. The transition from linear to quadratic behavior occurs at 1.7 J/cm2 for both signals. (Note: The fluorescence and Raman signal magnitudes have been arbitrarily separated for clarity.)

Fig. 4
Fig. 4

Effect of laser fluence on the fluorescence spectrum. Conditions are the same as for Fig. 3. (a) Spectrum obtained at a low fluence where the total fluorescence varies linearly with fluence. (b) Spectrum obtained at a high fluence where the total fluorescence varies quadratically with fluence.

Fig. 5
Fig. 5

Temperature dependence of normalized fluorescence energy from air at 1 atm following excitation of the O2 v′(7) ← v″(1) P23 transition.

Fig. 6
Fig. 6

Comparison of experimental and predicted fluorescence signal strengths based on the rms noise-to-signal ratio for LIF following the excitation of the O2 v′(4) ← v″(0) P19 transition at T = 297 K.

Fig. 7
Fig. 7

Predicted temperature measurement uncertainty in air at a constant density of 0.01 amagat.

Fig. 8
Fig. 8

LIF temperature measurements in air at 1 atm. The laser was tuned to the O2 v′(4) ← v″(0) R21 line.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

B v = 1.445584 - 0.015778 ( v + 0.5 ) , D v = 4.8425 × 10 - 6 + 3.3 × 10 - 8 ( v + 0.5 ) , λ = 1.9855 + 7 × 10 - 4 ( v + 0.5 ) , γ = - 8.525 × 10 - 3 - 7 × 10 - 5 ( v + 0.5 ) , λ D = 1.839 × 10 - 6 , γ D = - 4.01 × 10 - 9 ,
d d t ( N 1 g 1 ) = W 21 ( N 2 g 2 ) - W L ( N 1 g 1 - N 2 g 2 ) - W c ( N 1 g 1 - N 1 * g 1 ) ,
d d t ( N 2 g 2 ) = - ( W D + W f + W 21 ) N 2 g 2 + W L ( N 1 g 1 - N 2 g 2 ) - W c ( N 2 g 2 - N 2 * g 2 ) ,
d N 1 d t = - ( W L + W c ) N 1 + W c N 1 * ,
d N u d t = - W D N u + W L g 2 g 1 N 1 ,
S f = A L W f o t p N u ( t ) d t .
S f / S f o = 1 1 + W c / W L { W c W L + 1 - exp [ - ( 1 + W c / W L ) W L t p ] ( 1 + W c / W L ) W L t p } ,
S f o = A L g 2 g 1 N 1 * W f W D E L A σ 12 h ν
S f / S f o 1 ( E L / A ) ( σ 12 / h ν ) { 1 - exp [ - ( E L / A ) ( σ 12 / h ν ) ] } ,
S f / S f o 1.
Δ n e n e = n e - 1 / 2 .
n e ( T , ρ ) = S f ( T , ρ ) η c η d .
Δ n e = ( n e / T ) Δ T + ( n e / ρ ) Δ ρ .
Δ T T = [ Δ n e n e 2 + Δ ρ ρ 2 + K b 2 ] 1 / 2 / T n e n e T ,

Metrics