Abstract

Several examples of laser in situ monitoring of combustion processes are presented. Using a frequency modulated 13CO2 waveguide laser, in situ concentrations of NH3 down to 1 ppm were measured at temperatures up to 600°C in waste incinerators and power or chemical plants. Following ignition of CH3OH–O2 mixtures by a TEA CO2 laser, gas temperature profiles were measured using rapid scanning tunable diode laser spectroscopy of CO molecules. In laminar CH4–air counterflow diffusion flames at atmospheric pressure absolute concentrations, temperatures, and collisional lifetimes of OH radicals were determined by 2-D and picosecond LIF and absorption spectroscopy. Two-dimensional LIF and Mie scattering were used to observe fuel injection and combustion in a diesel engine.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. K. Lyon, “Method for the reduction of the concentration of NO in combustion effluence using ammonia,” U.S. Patent3,900,554 (1975).
  2. M. Gehring, K. Hoyermann, H. J. Schacke, J. Wolfrum, “Direct Studies of Some Elementary Steps for the Formation and Destruction of Nitric Oxide in the H–N–O-System,” in Fourteenth International Symposium on Combustion (Combustion Institute, Pittsburgh, 1973), pp. 99–105.
    [CrossRef]
  3. F. Allario, R. K. Seals, “Measurements of NH3 Absorption Coefficients with a 13C16O2 Laser,” Appl. Opt. 14, 2229–2233 (1975).
    [CrossRef] [PubMed]
  4. A. Kaldor, R. L. Woodin, “Applications of Lasers to Chemical Processing,” Proc. IEEE 70, 565–578 (1982).
    [CrossRef]
  5. J. Wolfrum, “Chemische Elementarprozesse bei der Bildung und Beseitigung von Schadstoffen in Verbrennungsvorgängen,” TECFLAM Seminar 1, 7–21 (1985).
  6. F. Janssen, F. v. d. Kerkhof, J. B. Lefers, P. Lodder, L. J. Luierweert, “The Determination of Ammonia in Flue Gas from the Selective Catalytic Reduction of Nitric Oxide with Ammonia,” Anal. Chim. Acta 190, 245–254 (1986).
    [CrossRef]
  7. H. Wolf, W. J. Riedel, in Power Plants “NH3-Measurements in Power Plants with DeNOx Installations,” in Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Preier, G. Schmidtke, G. Restelli, Eds. (Reidel, Dordrecht, The Netherlands, 1987), pp. 120–126.
    [CrossRef]
  8. K. Gregorius, H. Schorner, “Stack Gas Control by Diode Laser Spectrometer in Power Plants,” in Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Preier, G. Schmidtke, G. Restelli, Eds. (Reidel, Dordrecht, The Netherlands, 1987), pp. 127–133.
    [CrossRef]
  9. H. Neckel, J. Wolfrum, “IR Diode Laser Measurements of the NH3(ν2) Band at Different Temperatures,” Appl. Phys. B 49, 85–89 (1989).
    [CrossRef]
  10. F. W. Taylor, “Spectral Data for the ν2 Bands of Ammonia with Applications to Radiative Transfer in the Atmosphere of Jupiter,” J. Quant. Spectrosc. Radiat. Transfer 13, 1181–1217(1973).
    [CrossRef]
  11. L. S. Rothman et al., “AFGL Trace Gas Compilation: 1982 Version,” Appl. Opt. 22, 1616–1627 (1983).
    [CrossRef] [PubMed]
  12. A. Stein, T. R. Todd, B. N. Perry, “Carbon Dioxide Laser Monitor for NH3 in Flue Gas,” Appl. Opt. 22, 3378–3381 (1983).
    [CrossRef] [PubMed]
  13. U. Maas, B. Raffel, J. Wolfrum, J. Warnatz, “Observation and Simulation of Laser Induced Ignition Processes in O2–O3 and H2–O2 Mixtures,” in Twenty-First International Symposium on Combustion (Combustion Institute, Pittsburgh, 1986), pp. 1869–1876.
  14. B. Raffel, J. Wolfrum, “Spatial and Time Resolved Observation of CO2-Laser Induced Explosions of O2/O3 Mixtures in Cylindrical Cells,” Z. Phys. Chem. Neue Folge 161, 43–59 (1989).
    [CrossRef]
  15. B. Raffel, J. Wolfrum, “Infrared Laser Induced Ignition of Gas Mixtures,” Ber. Bunsenges. Phys. Chem. 90, 997–1001 (1986).
    [CrossRef]
  16. U. Maas, J. Warnatz, “Simulation of Thermal Ignition Processes in Two-Dimensional Geometries,” Z. Phys. Chem. Neue Folge 161, 61–81 (1989).
    [CrossRef]
  17. R. K. Hanson, P. K. Falcone, “Temperature Measurement Technique for High-Temperature Gases Using a Tunable Diode Laser,” Appl. Opt. 17, 2477–2480 (1978).
    [CrossRef] [PubMed]
  18. S. M. Schoenung, R. K. Hanson, “Temporally and Spatially Resolved Measurements of Fuel Mole Fraction in a Turbulent CO Diffusion Flame,” in Nineteenth International Symposium on Combustion (Combustion Institute, Pittsburgh, 1982), pp. 449–458.
  19. B. Rosier, P. Gicquel, D. Henry, A. Coppale, “Carbon Monoxide Concentrations and Temperature Measurements in a Low Pressure CH4–O2–NH3 Flame,” Appl. Opt. 27, 360–364 (1988).
    [CrossRef] [PubMed]
  20. H. Kanamori, J. E. Buttler, K. Kawaguchi, K. C. Yamada, E. Hirota, “Infrared Diode Laser Kinetic Spectroscopy of Transient Molecules Produced by Excimer Laser Photolysis: Application to the SO Radical,” J. Mol. Spectrosc. 113, 262–268 (1985).
    [CrossRef]
  21. P. H. Beckwith, C. E. Brown, D. J. Dannagher, D. R. Smith, J. Reid, “High Sensitivity Detection of Transient Infrared Absorption Using Tunable Diode Lasers,” Appl. Opt. 26, 2643–2649 (1987).
    [CrossRef] [PubMed]
  22. D. T. Cassidy, J. Reid, “High-Sensitivity Detection of Trace Gases Using Sweep Integration and Tunable Diode Lasers,” Appl. Opt. 21, 2527–2530 (1982).
    [CrossRef] [PubMed]
  23. F. A. Williams, “Turbulent Mixing in Non-Reactive and Reactive Flows,” in “Complex Chemical Reaction Systems,” S. N. B. Murphy, Ed. (Plenum, New York, 1975), p. 189.
  24. K. N. C. Bray, “Recent Advances in Theoretical Descriptions of Turbulent Diffusion Flames,” in Book, Springer Series in Chemical Physics, Vol. 47, J. Warnatz, W. Jager, Eds. (Springer-Verlag, Berlin, 1987), pp. 356–375.
  25. N. Peters, “Laminar Flamelet Concepts in Turbulent Combustion,” in Twenty-First International Symposium on Combustion (The Combustion Institute, Pittsburgh, 1986), pp. 1231–1250.
  26. H. Tsuji, “Counterflow Diffusion Flames,” Prog. Energy Combust. Sci. 8, 93–119 (1982).
    [CrossRef]
  27. H. Tsuji, I. Yamaoka, “Structure Analysis of Counterflow Diffusion Flames in the Forward Stagnation Region of a Porous Cylinder,” in Thirteenth International Symposium on Combustion (Combustion Institute, Pittsburgh, 1971), pp. 723–731.
    [CrossRef]
  28. G. Dixon-Lewis et al., “Calculation of the Structure and Extinction Limit of a Methane-Air Counterflow Diffusion Flame in the Forward Stagnation Region of a Porous Cylinder,” in Twentieth International Symposium on Combustion (The Combustion Institute, Pittsburgh, 1984), pp. 1893–1904.
  29. T. Dreier, B. Lange, J. Wolfrum, M. Zahn, F. Behrendt, J. Warnatz, “CARS Measurements and Computations of the Structure of Laminar Stagnation-Point Methane-Air Counterflow Diffusion Flames,” in Twenty-First International Symposium on Combustion (Combustion Institute, Pittsburgh, 1986), pp. 1729–1736.
  30. T. Dreier, B. Lange, J. Wolfrum, M. Zahn, F. Behrendt, J. Warnatz, “Comparison of CARS Measurements and Calculations of the Structure of Laminar Methane-Air Counterflow Diffusion Flames,” Ber. Bunsenges. Phys. Chem. 90, 1010–1015 (1986).
    [CrossRef]
  31. P. Andresen, A. Bath, W. Groger, H. W. Lulf, G. Meijer, J. J. ter Meulen, “Laser-Induced Fluorescence with Tunable Excimer Lasers as a Possible Method for Instantaneous Temperature Field Measurements at High Pressures: Checks with an Atmospheric Flame,” Appl. Opt. 27, 365–378 (1988).
    [CrossRef] [PubMed]
  32. R. Suntz, H. Becker, P. Monkhouse, J. Wolfrum, “Two-Dimensional Visualization of the Flame Front in an Internal Combustion Engine by Laser-Induced Fluorescence of OH Radicals,” Appl. Phys. B 47, 287–293 (1988).
    [CrossRef]
  33. R. J. Cattolica, D. A. Stephenson, “Two-Dimensional Imaging of Flame Temperature Using Laser-Induced Fluorescence,” Prog. Astronaut. Aeronaut. 95, 714–721 (1985).
  34. M. P. Lee, P. H. Paul, R. K. Hanson, “Quantitative Imaging of Temperature Fields in Air Using Planar Laser-Induced Fluorescence of O2,” Opt. Lett. 12, 75–77 (1987).
    [CrossRef] [PubMed]
  35. J. M. Seitzman, G. Kychakoff, R. K. Hanson, “Instantaneous Temperature Field Measurements Using Planar-Induced Fluorescence,” Opt. Lett. 10, 439–441 (1985).
    [CrossRef] [PubMed]
  36. G. H. Dieke, H. M. Crosswhite, “The Ultraviolet Bands of OH: Fundamental Data,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962).
    [CrossRef]
  37. A. Goldman, J. R. Gillis, “Spectral Line Parameters for the A2∑—X2Π(0,0) Band of OH for Atmospheric and High Temperatures,” J. Quant. Spectrosc. Radiat. Transfer 25, 111–135 (1981):
    [CrossRef]
  38. F. Behrendt, “Simulation laminarer Gegenstrom-Diffusions-flammen unter Verwendung detaillierter Reaktionsmechanismen,” Dissertation, U. Heidelberg (1989).
  39. R. Schwarzwald, P. Monkhouse, J. Wolfrum, “Picosecond Fluorescence Lifetimes Measurement of the OH Radical in an Atmospheric Pressure Flame,” Chem. Phys. Lett. 142, 15–18 (1987).
    [CrossRef]
  40. R. Schwarzwald, P. Monkhouse, J. Wolfrum, “Fluorescence Studies of OH and CN Radicals in Atmospheric Pressure Flames Using Picosecond Excitation,” in Twenty-Second International Symposium on Combustion (Combustion Institute, Pittsburgh, 1988), pp. 1413–1420.
  41. R. Schwarzwald, P. Monkhouse, J. Wolfrum, “Fluorescence Lifetimes for Nitric Oxide in Atmospheric Pressure Flames Using Picosecond Excitation,” Chem. Phys. Lett. 158, 60–64 (1989).
    [CrossRef]
  42. M. Kollner, P. Monkhouse, J. Wolfrum, “Time-Resolved LIF of OH (A2∑ v′ = 1 and v′ = 0) in Atmospheric Pressure Flames Using Picosecond Excitation,” Chem. Phys. Lett. 168, 355–360 (1990).
    [CrossRef]
  43. A. O. zur Loye, F. V. Bracco, “Two-Dimensional Visualization of Premixed-Charge Flame Structure in an IC Engine,” SAE Paper 870454 (1988).
  44. T. A. Baritaud, R. M. Green, “A 2-D Flame Visualization Technique Applied to the I.C. Engine,” SAE Paper 860025 (1986).
  45. G. F. W. Ziegler, A. Zettlitz, P. Meinhardt, R. Herweg, R. Maly, W. Pfister, “Cycle-Resolved Two-Dimensional Flame and Flow Visualization in a Spark-Ignition Engine,” SAE Paper 881634 (1988).
  46. F. W. Schipperijn, R. Nagasaka, R. F. Sawyer, R. M. Green, “Imaging of Engine Flow and Combustion Processes,” SAE Paper 881631 (1988).
  47. P. G. Felton, J. Mantzaras, D. S. Bomse, R. L. Woodin, “Initial Two-Dimensional Laser Induced Fluorescence Measurements of OH Radicals in an Internal Combustion Engine,” SAE Paper 881633 (1988).
  48. H. Becker et al., “Investigation of Flame Structure and Burning Behaviour in an IC Engine Simulator by 2D-LIF of OH Radicals,” Appl. Phys. B 50, 473–478 (1990).
    [CrossRef]
  49. P. Andresen et al., “Fluorescence Imaging Inside an Internal Combustion Engine Using Tunable Excimer Lasers,” Appl. Opt. 29, 2392–2404 (1990).
    [CrossRef] [PubMed]
  50. P. G. Felton, J. Mantzaras, M. E. A. Bardsley, F. V. Bracco, “2-D Visualization of Liquid Fuel Injection in an Internal Combustion Engine,” SAE Paper 872074 (1987).
  51. L. A. Melton, J. F. Verdieck, “Vapor/Liquid Vizualization for Fuel Sprays,” Combust. Sci. Tech. 42, 217–222 (1985).
    [CrossRef]
  52. M. E. A. Bardsley, P. G. Felton, F. V. Bracco, “2-D Visualization of Liquid and Vapor Fuel in an I.C. Engine,” SAE Paper 880521 (1988).
  53. M. E. A. Bradsley, P. G. Felton, F. V. Bracco, “2-D Visualization of a Hollow-Cone Spray in a Cup-in-Head, Ported, I.C. Engine,” SAE Paper 890315 (1989).
  54. M. G. Allen, R. K. Hanson, “Digital Imaging of Species Concentration Fields in Spray Flames,” in Twenty-First International Symposium on Combustion (Combustion Institute, Pittsburgh, 1986), pp. 1755–1762.
  55. M. G. Allen, R. K. Hanson, “Planar Laser-Induced-Fluorescence Monitoring of OH in a Spray Flame,” Opt. Eng. 25, 1309–1311 (1986).
  56. W. Hentschel, “Application of Lasers for in-Cylinder Studies and Flow Visualization” (in German), VDI Ber. 617, 347–376 (1986).
  57. W. Hentschel, H. Hesse, K. P. Schindler, “Experimental Investigation of Spray Formation and Combustion in a Real Diesel Engine,” Autotech 89, Birmingham (1989), paper 399.

1990 (3)

M. Kollner, P. Monkhouse, J. Wolfrum, “Time-Resolved LIF of OH (A2∑ v′ = 1 and v′ = 0) in Atmospheric Pressure Flames Using Picosecond Excitation,” Chem. Phys. Lett. 168, 355–360 (1990).
[CrossRef]

H. Becker et al., “Investigation of Flame Structure and Burning Behaviour in an IC Engine Simulator by 2D-LIF of OH Radicals,” Appl. Phys. B 50, 473–478 (1990).
[CrossRef]

P. Andresen et al., “Fluorescence Imaging Inside an Internal Combustion Engine Using Tunable Excimer Lasers,” Appl. Opt. 29, 2392–2404 (1990).
[CrossRef] [PubMed]

1989 (4)

R. Schwarzwald, P. Monkhouse, J. Wolfrum, “Fluorescence Lifetimes for Nitric Oxide in Atmospheric Pressure Flames Using Picosecond Excitation,” Chem. Phys. Lett. 158, 60–64 (1989).
[CrossRef]

H. Neckel, J. Wolfrum, “IR Diode Laser Measurements of the NH3(ν2) Band at Different Temperatures,” Appl. Phys. B 49, 85–89 (1989).
[CrossRef]

B. Raffel, J. Wolfrum, “Spatial and Time Resolved Observation of CO2-Laser Induced Explosions of O2/O3 Mixtures in Cylindrical Cells,” Z. Phys. Chem. Neue Folge 161, 43–59 (1989).
[CrossRef]

U. Maas, J. Warnatz, “Simulation of Thermal Ignition Processes in Two-Dimensional Geometries,” Z. Phys. Chem. Neue Folge 161, 61–81 (1989).
[CrossRef]

1988 (3)

1987 (3)

1986 (5)

F. Janssen, F. v. d. Kerkhof, J. B. Lefers, P. Lodder, L. J. Luierweert, “The Determination of Ammonia in Flue Gas from the Selective Catalytic Reduction of Nitric Oxide with Ammonia,” Anal. Chim. Acta 190, 245–254 (1986).
[CrossRef]

T. Dreier, B. Lange, J. Wolfrum, M. Zahn, F. Behrendt, J. Warnatz, “Comparison of CARS Measurements and Calculations of the Structure of Laminar Methane-Air Counterflow Diffusion Flames,” Ber. Bunsenges. Phys. Chem. 90, 1010–1015 (1986).
[CrossRef]

B. Raffel, J. Wolfrum, “Infrared Laser Induced Ignition of Gas Mixtures,” Ber. Bunsenges. Phys. Chem. 90, 997–1001 (1986).
[CrossRef]

M. G. Allen, R. K. Hanson, “Planar Laser-Induced-Fluorescence Monitoring of OH in a Spray Flame,” Opt. Eng. 25, 1309–1311 (1986).

W. Hentschel, “Application of Lasers for in-Cylinder Studies and Flow Visualization” (in German), VDI Ber. 617, 347–376 (1986).

1985 (5)

J. M. Seitzman, G. Kychakoff, R. K. Hanson, “Instantaneous Temperature Field Measurements Using Planar-Induced Fluorescence,” Opt. Lett. 10, 439–441 (1985).
[CrossRef] [PubMed]

H. Kanamori, J. E. Buttler, K. Kawaguchi, K. C. Yamada, E. Hirota, “Infrared Diode Laser Kinetic Spectroscopy of Transient Molecules Produced by Excimer Laser Photolysis: Application to the SO Radical,” J. Mol. Spectrosc. 113, 262–268 (1985).
[CrossRef]

J. Wolfrum, “Chemische Elementarprozesse bei der Bildung und Beseitigung von Schadstoffen in Verbrennungsvorgängen,” TECFLAM Seminar 1, 7–21 (1985).

R. J. Cattolica, D. A. Stephenson, “Two-Dimensional Imaging of Flame Temperature Using Laser-Induced Fluorescence,” Prog. Astronaut. Aeronaut. 95, 714–721 (1985).

L. A. Melton, J. F. Verdieck, “Vapor/Liquid Vizualization for Fuel Sprays,” Combust. Sci. Tech. 42, 217–222 (1985).
[CrossRef]

1983 (2)

1982 (3)

D. T. Cassidy, J. Reid, “High-Sensitivity Detection of Trace Gases Using Sweep Integration and Tunable Diode Lasers,” Appl. Opt. 21, 2527–2530 (1982).
[CrossRef] [PubMed]

A. Kaldor, R. L. Woodin, “Applications of Lasers to Chemical Processing,” Proc. IEEE 70, 565–578 (1982).
[CrossRef]

H. Tsuji, “Counterflow Diffusion Flames,” Prog. Energy Combust. Sci. 8, 93–119 (1982).
[CrossRef]

1981 (1)

A. Goldman, J. R. Gillis, “Spectral Line Parameters for the A2∑—X2Π(0,0) Band of OH for Atmospheric and High Temperatures,” J. Quant. Spectrosc. Radiat. Transfer 25, 111–135 (1981):
[CrossRef]

1978 (1)

1975 (1)

1973 (1)

F. W. Taylor, “Spectral Data for the ν2 Bands of Ammonia with Applications to Radiative Transfer in the Atmosphere of Jupiter,” J. Quant. Spectrosc. Radiat. Transfer 13, 1181–1217(1973).
[CrossRef]

1962 (1)

G. H. Dieke, H. M. Crosswhite, “The Ultraviolet Bands of OH: Fundamental Data,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962).
[CrossRef]

Allario, F.

Allen, M. G.

M. G. Allen, R. K. Hanson, “Planar Laser-Induced-Fluorescence Monitoring of OH in a Spray Flame,” Opt. Eng. 25, 1309–1311 (1986).

M. G. Allen, R. K. Hanson, “Digital Imaging of Species Concentration Fields in Spray Flames,” in Twenty-First International Symposium on Combustion (Combustion Institute, Pittsburgh, 1986), pp. 1755–1762.

Andresen, P.

Bardsley, M. E. A.

P. G. Felton, J. Mantzaras, M. E. A. Bardsley, F. V. Bracco, “2-D Visualization of Liquid Fuel Injection in an Internal Combustion Engine,” SAE Paper 872074 (1987).

M. E. A. Bardsley, P. G. Felton, F. V. Bracco, “2-D Visualization of Liquid and Vapor Fuel in an I.C. Engine,” SAE Paper 880521 (1988).

Baritaud, T. A.

T. A. Baritaud, R. M. Green, “A 2-D Flame Visualization Technique Applied to the I.C. Engine,” SAE Paper 860025 (1986).

Bath, A.

Becker, H.

H. Becker et al., “Investigation of Flame Structure and Burning Behaviour in an IC Engine Simulator by 2D-LIF of OH Radicals,” Appl. Phys. B 50, 473–478 (1990).
[CrossRef]

R. Suntz, H. Becker, P. Monkhouse, J. Wolfrum, “Two-Dimensional Visualization of the Flame Front in an Internal Combustion Engine by Laser-Induced Fluorescence of OH Radicals,” Appl. Phys. B 47, 287–293 (1988).
[CrossRef]

Beckwith, P. H.

Behrendt, F.

T. Dreier, B. Lange, J. Wolfrum, M. Zahn, F. Behrendt, J. Warnatz, “Comparison of CARS Measurements and Calculations of the Structure of Laminar Methane-Air Counterflow Diffusion Flames,” Ber. Bunsenges. Phys. Chem. 90, 1010–1015 (1986).
[CrossRef]

F. Behrendt, “Simulation laminarer Gegenstrom-Diffusions-flammen unter Verwendung detaillierter Reaktionsmechanismen,” Dissertation, U. Heidelberg (1989).

T. Dreier, B. Lange, J. Wolfrum, M. Zahn, F. Behrendt, J. Warnatz, “CARS Measurements and Computations of the Structure of Laminar Stagnation-Point Methane-Air Counterflow Diffusion Flames,” in Twenty-First International Symposium on Combustion (Combustion Institute, Pittsburgh, 1986), pp. 1729–1736.

Bomse, D. S.

P. G. Felton, J. Mantzaras, D. S. Bomse, R. L. Woodin, “Initial Two-Dimensional Laser Induced Fluorescence Measurements of OH Radicals in an Internal Combustion Engine,” SAE Paper 881633 (1988).

Bracco, F. V.

A. O. zur Loye, F. V. Bracco, “Two-Dimensional Visualization of Premixed-Charge Flame Structure in an IC Engine,” SAE Paper 870454 (1988).

M. E. A. Bardsley, P. G. Felton, F. V. Bracco, “2-D Visualization of Liquid and Vapor Fuel in an I.C. Engine,” SAE Paper 880521 (1988).

P. G. Felton, J. Mantzaras, M. E. A. Bardsley, F. V. Bracco, “2-D Visualization of Liquid Fuel Injection in an Internal Combustion Engine,” SAE Paper 872074 (1987).

M. E. A. Bradsley, P. G. Felton, F. V. Bracco, “2-D Visualization of a Hollow-Cone Spray in a Cup-in-Head, Ported, I.C. Engine,” SAE Paper 890315 (1989).

Bradsley, M. E. A.

M. E. A. Bradsley, P. G. Felton, F. V. Bracco, “2-D Visualization of a Hollow-Cone Spray in a Cup-in-Head, Ported, I.C. Engine,” SAE Paper 890315 (1989).

Bray, K. N. C.

K. N. C. Bray, “Recent Advances in Theoretical Descriptions of Turbulent Diffusion Flames,” in Book, Springer Series in Chemical Physics, Vol. 47, J. Warnatz, W. Jager, Eds. (Springer-Verlag, Berlin, 1987), pp. 356–375.

Brown, C. E.

Buttler, J. E.

H. Kanamori, J. E. Buttler, K. Kawaguchi, K. C. Yamada, E. Hirota, “Infrared Diode Laser Kinetic Spectroscopy of Transient Molecules Produced by Excimer Laser Photolysis: Application to the SO Radical,” J. Mol. Spectrosc. 113, 262–268 (1985).
[CrossRef]

Cassidy, D. T.

Cattolica, R. J.

R. J. Cattolica, D. A. Stephenson, “Two-Dimensional Imaging of Flame Temperature Using Laser-Induced Fluorescence,” Prog. Astronaut. Aeronaut. 95, 714–721 (1985).

Coppale, A.

Crosswhite, H. M.

G. H. Dieke, H. M. Crosswhite, “The Ultraviolet Bands of OH: Fundamental Data,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962).
[CrossRef]

Dannagher, D. J.

Dieke, G. H.

G. H. Dieke, H. M. Crosswhite, “The Ultraviolet Bands of OH: Fundamental Data,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962).
[CrossRef]

Dixon-Lewis, G.

G. Dixon-Lewis et al., “Calculation of the Structure and Extinction Limit of a Methane-Air Counterflow Diffusion Flame in the Forward Stagnation Region of a Porous Cylinder,” in Twentieth International Symposium on Combustion (The Combustion Institute, Pittsburgh, 1984), pp. 1893–1904.

Dreier, T.

T. Dreier, B. Lange, J. Wolfrum, M. Zahn, F. Behrendt, J. Warnatz, “Comparison of CARS Measurements and Calculations of the Structure of Laminar Methane-Air Counterflow Diffusion Flames,” Ber. Bunsenges. Phys. Chem. 90, 1010–1015 (1986).
[CrossRef]

T. Dreier, B. Lange, J. Wolfrum, M. Zahn, F. Behrendt, J. Warnatz, “CARS Measurements and Computations of the Structure of Laminar Stagnation-Point Methane-Air Counterflow Diffusion Flames,” in Twenty-First International Symposium on Combustion (Combustion Institute, Pittsburgh, 1986), pp. 1729–1736.

Falcone, P. K.

Felton, P. G.

P. G. Felton, J. Mantzaras, D. S. Bomse, R. L. Woodin, “Initial Two-Dimensional Laser Induced Fluorescence Measurements of OH Radicals in an Internal Combustion Engine,” SAE Paper 881633 (1988).

M. E. A. Bardsley, P. G. Felton, F. V. Bracco, “2-D Visualization of Liquid and Vapor Fuel in an I.C. Engine,” SAE Paper 880521 (1988).

P. G. Felton, J. Mantzaras, M. E. A. Bardsley, F. V. Bracco, “2-D Visualization of Liquid Fuel Injection in an Internal Combustion Engine,” SAE Paper 872074 (1987).

M. E. A. Bradsley, P. G. Felton, F. V. Bracco, “2-D Visualization of a Hollow-Cone Spray in a Cup-in-Head, Ported, I.C. Engine,” SAE Paper 890315 (1989).

Gehring, M.

M. Gehring, K. Hoyermann, H. J. Schacke, J. Wolfrum, “Direct Studies of Some Elementary Steps for the Formation and Destruction of Nitric Oxide in the H–N–O-System,” in Fourteenth International Symposium on Combustion (Combustion Institute, Pittsburgh, 1973), pp. 99–105.
[CrossRef]

Gicquel, P.

Gillis, J. R.

A. Goldman, J. R. Gillis, “Spectral Line Parameters for the A2∑—X2Π(0,0) Band of OH for Atmospheric and High Temperatures,” J. Quant. Spectrosc. Radiat. Transfer 25, 111–135 (1981):
[CrossRef]

Goldman, A.

A. Goldman, J. R. Gillis, “Spectral Line Parameters for the A2∑—X2Π(0,0) Band of OH for Atmospheric and High Temperatures,” J. Quant. Spectrosc. Radiat. Transfer 25, 111–135 (1981):
[CrossRef]

Green, R. M.

T. A. Baritaud, R. M. Green, “A 2-D Flame Visualization Technique Applied to the I.C. Engine,” SAE Paper 860025 (1986).

F. W. Schipperijn, R. Nagasaka, R. F. Sawyer, R. M. Green, “Imaging of Engine Flow and Combustion Processes,” SAE Paper 881631 (1988).

Gregorius, K.

K. Gregorius, H. Schorner, “Stack Gas Control by Diode Laser Spectrometer in Power Plants,” in Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Preier, G. Schmidtke, G. Restelli, Eds. (Reidel, Dordrecht, The Netherlands, 1987), pp. 127–133.
[CrossRef]

Groger, W.

Hanson, R. K.

M. P. Lee, P. H. Paul, R. K. Hanson, “Quantitative Imaging of Temperature Fields in Air Using Planar Laser-Induced Fluorescence of O2,” Opt. Lett. 12, 75–77 (1987).
[CrossRef] [PubMed]

M. G. Allen, R. K. Hanson, “Planar Laser-Induced-Fluorescence Monitoring of OH in a Spray Flame,” Opt. Eng. 25, 1309–1311 (1986).

J. M. Seitzman, G. Kychakoff, R. K. Hanson, “Instantaneous Temperature Field Measurements Using Planar-Induced Fluorescence,” Opt. Lett. 10, 439–441 (1985).
[CrossRef] [PubMed]

R. K. Hanson, P. K. Falcone, “Temperature Measurement Technique for High-Temperature Gases Using a Tunable Diode Laser,” Appl. Opt. 17, 2477–2480 (1978).
[CrossRef] [PubMed]

M. G. Allen, R. K. Hanson, “Digital Imaging of Species Concentration Fields in Spray Flames,” in Twenty-First International Symposium on Combustion (Combustion Institute, Pittsburgh, 1986), pp. 1755–1762.

S. M. Schoenung, R. K. Hanson, “Temporally and Spatially Resolved Measurements of Fuel Mole Fraction in a Turbulent CO Diffusion Flame,” in Nineteenth International Symposium on Combustion (Combustion Institute, Pittsburgh, 1982), pp. 449–458.

Henry, D.

Hentschel, W.

W. Hentschel, “Application of Lasers for in-Cylinder Studies and Flow Visualization” (in German), VDI Ber. 617, 347–376 (1986).

W. Hentschel, H. Hesse, K. P. Schindler, “Experimental Investigation of Spray Formation and Combustion in a Real Diesel Engine,” Autotech 89, Birmingham (1989), paper 399.

Herweg, R.

G. F. W. Ziegler, A. Zettlitz, P. Meinhardt, R. Herweg, R. Maly, W. Pfister, “Cycle-Resolved Two-Dimensional Flame and Flow Visualization in a Spark-Ignition Engine,” SAE Paper 881634 (1988).

Hesse, H.

W. Hentschel, H. Hesse, K. P. Schindler, “Experimental Investigation of Spray Formation and Combustion in a Real Diesel Engine,” Autotech 89, Birmingham (1989), paper 399.

Hirota, E.

H. Kanamori, J. E. Buttler, K. Kawaguchi, K. C. Yamada, E. Hirota, “Infrared Diode Laser Kinetic Spectroscopy of Transient Molecules Produced by Excimer Laser Photolysis: Application to the SO Radical,” J. Mol. Spectrosc. 113, 262–268 (1985).
[CrossRef]

Hoyermann, K.

M. Gehring, K. Hoyermann, H. J. Schacke, J. Wolfrum, “Direct Studies of Some Elementary Steps for the Formation and Destruction of Nitric Oxide in the H–N–O-System,” in Fourteenth International Symposium on Combustion (Combustion Institute, Pittsburgh, 1973), pp. 99–105.
[CrossRef]

Janssen, F.

F. Janssen, F. v. d. Kerkhof, J. B. Lefers, P. Lodder, L. J. Luierweert, “The Determination of Ammonia in Flue Gas from the Selective Catalytic Reduction of Nitric Oxide with Ammonia,” Anal. Chim. Acta 190, 245–254 (1986).
[CrossRef]

Kaldor, A.

A. Kaldor, R. L. Woodin, “Applications of Lasers to Chemical Processing,” Proc. IEEE 70, 565–578 (1982).
[CrossRef]

Kanamori, H.

H. Kanamori, J. E. Buttler, K. Kawaguchi, K. C. Yamada, E. Hirota, “Infrared Diode Laser Kinetic Spectroscopy of Transient Molecules Produced by Excimer Laser Photolysis: Application to the SO Radical,” J. Mol. Spectrosc. 113, 262–268 (1985).
[CrossRef]

Kawaguchi, K.

H. Kanamori, J. E. Buttler, K. Kawaguchi, K. C. Yamada, E. Hirota, “Infrared Diode Laser Kinetic Spectroscopy of Transient Molecules Produced by Excimer Laser Photolysis: Application to the SO Radical,” J. Mol. Spectrosc. 113, 262–268 (1985).
[CrossRef]

Kerkhof, F. v. d.

F. Janssen, F. v. d. Kerkhof, J. B. Lefers, P. Lodder, L. J. Luierweert, “The Determination of Ammonia in Flue Gas from the Selective Catalytic Reduction of Nitric Oxide with Ammonia,” Anal. Chim. Acta 190, 245–254 (1986).
[CrossRef]

Kollner, M.

M. Kollner, P. Monkhouse, J. Wolfrum, “Time-Resolved LIF of OH (A2∑ v′ = 1 and v′ = 0) in Atmospheric Pressure Flames Using Picosecond Excitation,” Chem. Phys. Lett. 168, 355–360 (1990).
[CrossRef]

Kychakoff, G.

Lange, B.

T. Dreier, B. Lange, J. Wolfrum, M. Zahn, F. Behrendt, J. Warnatz, “Comparison of CARS Measurements and Calculations of the Structure of Laminar Methane-Air Counterflow Diffusion Flames,” Ber. Bunsenges. Phys. Chem. 90, 1010–1015 (1986).
[CrossRef]

T. Dreier, B. Lange, J. Wolfrum, M. Zahn, F. Behrendt, J. Warnatz, “CARS Measurements and Computations of the Structure of Laminar Stagnation-Point Methane-Air Counterflow Diffusion Flames,” in Twenty-First International Symposium on Combustion (Combustion Institute, Pittsburgh, 1986), pp. 1729–1736.

Lee, M. P.

Lefers, J. B.

F. Janssen, F. v. d. Kerkhof, J. B. Lefers, P. Lodder, L. J. Luierweert, “The Determination of Ammonia in Flue Gas from the Selective Catalytic Reduction of Nitric Oxide with Ammonia,” Anal. Chim. Acta 190, 245–254 (1986).
[CrossRef]

Lodder, P.

F. Janssen, F. v. d. Kerkhof, J. B. Lefers, P. Lodder, L. J. Luierweert, “The Determination of Ammonia in Flue Gas from the Selective Catalytic Reduction of Nitric Oxide with Ammonia,” Anal. Chim. Acta 190, 245–254 (1986).
[CrossRef]

Luierweert, L. J.

F. Janssen, F. v. d. Kerkhof, J. B. Lefers, P. Lodder, L. J. Luierweert, “The Determination of Ammonia in Flue Gas from the Selective Catalytic Reduction of Nitric Oxide with Ammonia,” Anal. Chim. Acta 190, 245–254 (1986).
[CrossRef]

Lulf, H. W.

Lyon, R. K.

R. K. Lyon, “Method for the reduction of the concentration of NO in combustion effluence using ammonia,” U.S. Patent3,900,554 (1975).

Maas, U.

U. Maas, J. Warnatz, “Simulation of Thermal Ignition Processes in Two-Dimensional Geometries,” Z. Phys. Chem. Neue Folge 161, 61–81 (1989).
[CrossRef]

U. Maas, B. Raffel, J. Wolfrum, J. Warnatz, “Observation and Simulation of Laser Induced Ignition Processes in O2–O3 and H2–O2 Mixtures,” in Twenty-First International Symposium on Combustion (Combustion Institute, Pittsburgh, 1986), pp. 1869–1876.

Maly, R.

G. F. W. Ziegler, A. Zettlitz, P. Meinhardt, R. Herweg, R. Maly, W. Pfister, “Cycle-Resolved Two-Dimensional Flame and Flow Visualization in a Spark-Ignition Engine,” SAE Paper 881634 (1988).

Mantzaras, J.

P. G. Felton, J. Mantzaras, D. S. Bomse, R. L. Woodin, “Initial Two-Dimensional Laser Induced Fluorescence Measurements of OH Radicals in an Internal Combustion Engine,” SAE Paper 881633 (1988).

P. G. Felton, J. Mantzaras, M. E. A. Bardsley, F. V. Bracco, “2-D Visualization of Liquid Fuel Injection in an Internal Combustion Engine,” SAE Paper 872074 (1987).

Meijer, G.

Meinhardt, P.

G. F. W. Ziegler, A. Zettlitz, P. Meinhardt, R. Herweg, R. Maly, W. Pfister, “Cycle-Resolved Two-Dimensional Flame and Flow Visualization in a Spark-Ignition Engine,” SAE Paper 881634 (1988).

Melton, L. A.

L. A. Melton, J. F. Verdieck, “Vapor/Liquid Vizualization for Fuel Sprays,” Combust. Sci. Tech. 42, 217–222 (1985).
[CrossRef]

Monkhouse, P.

M. Kollner, P. Monkhouse, J. Wolfrum, “Time-Resolved LIF of OH (A2∑ v′ = 1 and v′ = 0) in Atmospheric Pressure Flames Using Picosecond Excitation,” Chem. Phys. Lett. 168, 355–360 (1990).
[CrossRef]

R. Schwarzwald, P. Monkhouse, J. Wolfrum, “Fluorescence Lifetimes for Nitric Oxide in Atmospheric Pressure Flames Using Picosecond Excitation,” Chem. Phys. Lett. 158, 60–64 (1989).
[CrossRef]

R. Suntz, H. Becker, P. Monkhouse, J. Wolfrum, “Two-Dimensional Visualization of the Flame Front in an Internal Combustion Engine by Laser-Induced Fluorescence of OH Radicals,” Appl. Phys. B 47, 287–293 (1988).
[CrossRef]

R. Schwarzwald, P. Monkhouse, J. Wolfrum, “Picosecond Fluorescence Lifetimes Measurement of the OH Radical in an Atmospheric Pressure Flame,” Chem. Phys. Lett. 142, 15–18 (1987).
[CrossRef]

R. Schwarzwald, P. Monkhouse, J. Wolfrum, “Fluorescence Studies of OH and CN Radicals in Atmospheric Pressure Flames Using Picosecond Excitation,” in Twenty-Second International Symposium on Combustion (Combustion Institute, Pittsburgh, 1988), pp. 1413–1420.

Nagasaka, R.

F. W. Schipperijn, R. Nagasaka, R. F. Sawyer, R. M. Green, “Imaging of Engine Flow and Combustion Processes,” SAE Paper 881631 (1988).

Neckel, H.

H. Neckel, J. Wolfrum, “IR Diode Laser Measurements of the NH3(ν2) Band at Different Temperatures,” Appl. Phys. B 49, 85–89 (1989).
[CrossRef]

Paul, P. H.

Perry, B. N.

Peters, N.

N. Peters, “Laminar Flamelet Concepts in Turbulent Combustion,” in Twenty-First International Symposium on Combustion (The Combustion Institute, Pittsburgh, 1986), pp. 1231–1250.

Pfister, W.

G. F. W. Ziegler, A. Zettlitz, P. Meinhardt, R. Herweg, R. Maly, W. Pfister, “Cycle-Resolved Two-Dimensional Flame and Flow Visualization in a Spark-Ignition Engine,” SAE Paper 881634 (1988).

Raffel, B.

B. Raffel, J. Wolfrum, “Spatial and Time Resolved Observation of CO2-Laser Induced Explosions of O2/O3 Mixtures in Cylindrical Cells,” Z. Phys. Chem. Neue Folge 161, 43–59 (1989).
[CrossRef]

B. Raffel, J. Wolfrum, “Infrared Laser Induced Ignition of Gas Mixtures,” Ber. Bunsenges. Phys. Chem. 90, 997–1001 (1986).
[CrossRef]

U. Maas, B. Raffel, J. Wolfrum, J. Warnatz, “Observation and Simulation of Laser Induced Ignition Processes in O2–O3 and H2–O2 Mixtures,” in Twenty-First International Symposium on Combustion (Combustion Institute, Pittsburgh, 1986), pp. 1869–1876.

Reid, J.

Riedel, W. J.

H. Wolf, W. J. Riedel, in Power Plants “NH3-Measurements in Power Plants with DeNOx Installations,” in Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Preier, G. Schmidtke, G. Restelli, Eds. (Reidel, Dordrecht, The Netherlands, 1987), pp. 120–126.
[CrossRef]

Rosier, B.

Rothman, L. S.

Sawyer, R. F.

F. W. Schipperijn, R. Nagasaka, R. F. Sawyer, R. M. Green, “Imaging of Engine Flow and Combustion Processes,” SAE Paper 881631 (1988).

Schacke, H. J.

M. Gehring, K. Hoyermann, H. J. Schacke, J. Wolfrum, “Direct Studies of Some Elementary Steps for the Formation and Destruction of Nitric Oxide in the H–N–O-System,” in Fourteenth International Symposium on Combustion (Combustion Institute, Pittsburgh, 1973), pp. 99–105.
[CrossRef]

Schindler, K. P.

W. Hentschel, H. Hesse, K. P. Schindler, “Experimental Investigation of Spray Formation and Combustion in a Real Diesel Engine,” Autotech 89, Birmingham (1989), paper 399.

Schipperijn, F. W.

F. W. Schipperijn, R. Nagasaka, R. F. Sawyer, R. M. Green, “Imaging of Engine Flow and Combustion Processes,” SAE Paper 881631 (1988).

Schoenung, S. M.

S. M. Schoenung, R. K. Hanson, “Temporally and Spatially Resolved Measurements of Fuel Mole Fraction in a Turbulent CO Diffusion Flame,” in Nineteenth International Symposium on Combustion (Combustion Institute, Pittsburgh, 1982), pp. 449–458.

Schorner, H.

K. Gregorius, H. Schorner, “Stack Gas Control by Diode Laser Spectrometer in Power Plants,” in Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Preier, G. Schmidtke, G. Restelli, Eds. (Reidel, Dordrecht, The Netherlands, 1987), pp. 127–133.
[CrossRef]

Schwarzwald, R.

R. Schwarzwald, P. Monkhouse, J. Wolfrum, “Fluorescence Lifetimes for Nitric Oxide in Atmospheric Pressure Flames Using Picosecond Excitation,” Chem. Phys. Lett. 158, 60–64 (1989).
[CrossRef]

R. Schwarzwald, P. Monkhouse, J. Wolfrum, “Picosecond Fluorescence Lifetimes Measurement of the OH Radical in an Atmospheric Pressure Flame,” Chem. Phys. Lett. 142, 15–18 (1987).
[CrossRef]

R. Schwarzwald, P. Monkhouse, J. Wolfrum, “Fluorescence Studies of OH and CN Radicals in Atmospheric Pressure Flames Using Picosecond Excitation,” in Twenty-Second International Symposium on Combustion (Combustion Institute, Pittsburgh, 1988), pp. 1413–1420.

Seals, R. K.

Seitzman, J. M.

Smith, D. R.

Stein, A.

Stephenson, D. A.

R. J. Cattolica, D. A. Stephenson, “Two-Dimensional Imaging of Flame Temperature Using Laser-Induced Fluorescence,” Prog. Astronaut. Aeronaut. 95, 714–721 (1985).

Suntz, R.

R. Suntz, H. Becker, P. Monkhouse, J. Wolfrum, “Two-Dimensional Visualization of the Flame Front in an Internal Combustion Engine by Laser-Induced Fluorescence of OH Radicals,” Appl. Phys. B 47, 287–293 (1988).
[CrossRef]

Taylor, F. W.

F. W. Taylor, “Spectral Data for the ν2 Bands of Ammonia with Applications to Radiative Transfer in the Atmosphere of Jupiter,” J. Quant. Spectrosc. Radiat. Transfer 13, 1181–1217(1973).
[CrossRef]

ter Meulen, J. J.

Todd, T. R.

Tsuji, H.

H. Tsuji, “Counterflow Diffusion Flames,” Prog. Energy Combust. Sci. 8, 93–119 (1982).
[CrossRef]

H. Tsuji, I. Yamaoka, “Structure Analysis of Counterflow Diffusion Flames in the Forward Stagnation Region of a Porous Cylinder,” in Thirteenth International Symposium on Combustion (Combustion Institute, Pittsburgh, 1971), pp. 723–731.
[CrossRef]

Verdieck, J. F.

L. A. Melton, J. F. Verdieck, “Vapor/Liquid Vizualization for Fuel Sprays,” Combust. Sci. Tech. 42, 217–222 (1985).
[CrossRef]

Warnatz, J.

U. Maas, J. Warnatz, “Simulation of Thermal Ignition Processes in Two-Dimensional Geometries,” Z. Phys. Chem. Neue Folge 161, 61–81 (1989).
[CrossRef]

T. Dreier, B. Lange, J. Wolfrum, M. Zahn, F. Behrendt, J. Warnatz, “Comparison of CARS Measurements and Calculations of the Structure of Laminar Methane-Air Counterflow Diffusion Flames,” Ber. Bunsenges. Phys. Chem. 90, 1010–1015 (1986).
[CrossRef]

U. Maas, B. Raffel, J. Wolfrum, J. Warnatz, “Observation and Simulation of Laser Induced Ignition Processes in O2–O3 and H2–O2 Mixtures,” in Twenty-First International Symposium on Combustion (Combustion Institute, Pittsburgh, 1986), pp. 1869–1876.

T. Dreier, B. Lange, J. Wolfrum, M. Zahn, F. Behrendt, J. Warnatz, “CARS Measurements and Computations of the Structure of Laminar Stagnation-Point Methane-Air Counterflow Diffusion Flames,” in Twenty-First International Symposium on Combustion (Combustion Institute, Pittsburgh, 1986), pp. 1729–1736.

Williams, F. A.

F. A. Williams, “Turbulent Mixing in Non-Reactive and Reactive Flows,” in “Complex Chemical Reaction Systems,” S. N. B. Murphy, Ed. (Plenum, New York, 1975), p. 189.

Wolf, H.

H. Wolf, W. J. Riedel, in Power Plants “NH3-Measurements in Power Plants with DeNOx Installations,” in Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Preier, G. Schmidtke, G. Restelli, Eds. (Reidel, Dordrecht, The Netherlands, 1987), pp. 120–126.
[CrossRef]

Wolfrum, J.

M. Kollner, P. Monkhouse, J. Wolfrum, “Time-Resolved LIF of OH (A2∑ v′ = 1 and v′ = 0) in Atmospheric Pressure Flames Using Picosecond Excitation,” Chem. Phys. Lett. 168, 355–360 (1990).
[CrossRef]

B. Raffel, J. Wolfrum, “Spatial and Time Resolved Observation of CO2-Laser Induced Explosions of O2/O3 Mixtures in Cylindrical Cells,” Z. Phys. Chem. Neue Folge 161, 43–59 (1989).
[CrossRef]

R. Schwarzwald, P. Monkhouse, J. Wolfrum, “Fluorescence Lifetimes for Nitric Oxide in Atmospheric Pressure Flames Using Picosecond Excitation,” Chem. Phys. Lett. 158, 60–64 (1989).
[CrossRef]

H. Neckel, J. Wolfrum, “IR Diode Laser Measurements of the NH3(ν2) Band at Different Temperatures,” Appl. Phys. B 49, 85–89 (1989).
[CrossRef]

R. Suntz, H. Becker, P. Monkhouse, J. Wolfrum, “Two-Dimensional Visualization of the Flame Front in an Internal Combustion Engine by Laser-Induced Fluorescence of OH Radicals,” Appl. Phys. B 47, 287–293 (1988).
[CrossRef]

R. Schwarzwald, P. Monkhouse, J. Wolfrum, “Picosecond Fluorescence Lifetimes Measurement of the OH Radical in an Atmospheric Pressure Flame,” Chem. Phys. Lett. 142, 15–18 (1987).
[CrossRef]

B. Raffel, J. Wolfrum, “Infrared Laser Induced Ignition of Gas Mixtures,” Ber. Bunsenges. Phys. Chem. 90, 997–1001 (1986).
[CrossRef]

T. Dreier, B. Lange, J. Wolfrum, M. Zahn, F. Behrendt, J. Warnatz, “Comparison of CARS Measurements and Calculations of the Structure of Laminar Methane-Air Counterflow Diffusion Flames,” Ber. Bunsenges. Phys. Chem. 90, 1010–1015 (1986).
[CrossRef]

J. Wolfrum, “Chemische Elementarprozesse bei der Bildung und Beseitigung von Schadstoffen in Verbrennungsvorgängen,” TECFLAM Seminar 1, 7–21 (1985).

R. Schwarzwald, P. Monkhouse, J. Wolfrum, “Fluorescence Studies of OH and CN Radicals in Atmospheric Pressure Flames Using Picosecond Excitation,” in Twenty-Second International Symposium on Combustion (Combustion Institute, Pittsburgh, 1988), pp. 1413–1420.

M. Gehring, K. Hoyermann, H. J. Schacke, J. Wolfrum, “Direct Studies of Some Elementary Steps for the Formation and Destruction of Nitric Oxide in the H–N–O-System,” in Fourteenth International Symposium on Combustion (Combustion Institute, Pittsburgh, 1973), pp. 99–105.
[CrossRef]

U. Maas, B. Raffel, J. Wolfrum, J. Warnatz, “Observation and Simulation of Laser Induced Ignition Processes in O2–O3 and H2–O2 Mixtures,” in Twenty-First International Symposium on Combustion (Combustion Institute, Pittsburgh, 1986), pp. 1869–1876.

T. Dreier, B. Lange, J. Wolfrum, M. Zahn, F. Behrendt, J. Warnatz, “CARS Measurements and Computations of the Structure of Laminar Stagnation-Point Methane-Air Counterflow Diffusion Flames,” in Twenty-First International Symposium on Combustion (Combustion Institute, Pittsburgh, 1986), pp. 1729–1736.

Woodin, R. L.

A. Kaldor, R. L. Woodin, “Applications of Lasers to Chemical Processing,” Proc. IEEE 70, 565–578 (1982).
[CrossRef]

P. G. Felton, J. Mantzaras, D. S. Bomse, R. L. Woodin, “Initial Two-Dimensional Laser Induced Fluorescence Measurements of OH Radicals in an Internal Combustion Engine,” SAE Paper 881633 (1988).

Yamada, K. C.

H. Kanamori, J. E. Buttler, K. Kawaguchi, K. C. Yamada, E. Hirota, “Infrared Diode Laser Kinetic Spectroscopy of Transient Molecules Produced by Excimer Laser Photolysis: Application to the SO Radical,” J. Mol. Spectrosc. 113, 262–268 (1985).
[CrossRef]

Yamaoka, I.

H. Tsuji, I. Yamaoka, “Structure Analysis of Counterflow Diffusion Flames in the Forward Stagnation Region of a Porous Cylinder,” in Thirteenth International Symposium on Combustion (Combustion Institute, Pittsburgh, 1971), pp. 723–731.
[CrossRef]

Zahn, M.

T. Dreier, B. Lange, J. Wolfrum, M. Zahn, F. Behrendt, J. Warnatz, “Comparison of CARS Measurements and Calculations of the Structure of Laminar Methane-Air Counterflow Diffusion Flames,” Ber. Bunsenges. Phys. Chem. 90, 1010–1015 (1986).
[CrossRef]

T. Dreier, B. Lange, J. Wolfrum, M. Zahn, F. Behrendt, J. Warnatz, “CARS Measurements and Computations of the Structure of Laminar Stagnation-Point Methane-Air Counterflow Diffusion Flames,” in Twenty-First International Symposium on Combustion (Combustion Institute, Pittsburgh, 1986), pp. 1729–1736.

Zettlitz, A.

G. F. W. Ziegler, A. Zettlitz, P. Meinhardt, R. Herweg, R. Maly, W. Pfister, “Cycle-Resolved Two-Dimensional Flame and Flow Visualization in a Spark-Ignition Engine,” SAE Paper 881634 (1988).

Ziegler, G. F. W.

G. F. W. Ziegler, A. Zettlitz, P. Meinhardt, R. Herweg, R. Maly, W. Pfister, “Cycle-Resolved Two-Dimensional Flame and Flow Visualization in a Spark-Ignition Engine,” SAE Paper 881634 (1988).

zur Loye, A. O.

A. O. zur Loye, F. V. Bracco, “Two-Dimensional Visualization of Premixed-Charge Flame Structure in an IC Engine,” SAE Paper 870454 (1988).

Anal. Chim. Acta (1)

F. Janssen, F. v. d. Kerkhof, J. B. Lefers, P. Lodder, L. J. Luierweert, “The Determination of Ammonia in Flue Gas from the Selective Catalytic Reduction of Nitric Oxide with Ammonia,” Anal. Chim. Acta 190, 245–254 (1986).
[CrossRef]

Appl. Opt. (9)

F. Allario, R. K. Seals, “Measurements of NH3 Absorption Coefficients with a 13C16O2 Laser,” Appl. Opt. 14, 2229–2233 (1975).
[CrossRef] [PubMed]

D. T. Cassidy, J. Reid, “High-Sensitivity Detection of Trace Gases Using Sweep Integration and Tunable Diode Lasers,” Appl. Opt. 21, 2527–2530 (1982).
[CrossRef] [PubMed]

L. S. Rothman et al., “AFGL Trace Gas Compilation: 1982 Version,” Appl. Opt. 22, 1616–1627 (1983).
[CrossRef] [PubMed]

A. Stein, T. R. Todd, B. N. Perry, “Carbon Dioxide Laser Monitor for NH3 in Flue Gas,” Appl. Opt. 22, 3378–3381 (1983).
[CrossRef] [PubMed]

P. H. Beckwith, C. E. Brown, D. J. Dannagher, D. R. Smith, J. Reid, “High Sensitivity Detection of Transient Infrared Absorption Using Tunable Diode Lasers,” Appl. Opt. 26, 2643–2649 (1987).
[CrossRef] [PubMed]

B. Rosier, P. Gicquel, D. Henry, A. Coppale, “Carbon Monoxide Concentrations and Temperature Measurements in a Low Pressure CH4–O2–NH3 Flame,” Appl. Opt. 27, 360–364 (1988).
[CrossRef] [PubMed]

P. Andresen et al., “Fluorescence Imaging Inside an Internal Combustion Engine Using Tunable Excimer Lasers,” Appl. Opt. 29, 2392–2404 (1990).
[CrossRef] [PubMed]

P. Andresen, A. Bath, W. Groger, H. W. Lulf, G. Meijer, J. J. ter Meulen, “Laser-Induced Fluorescence with Tunable Excimer Lasers as a Possible Method for Instantaneous Temperature Field Measurements at High Pressures: Checks with an Atmospheric Flame,” Appl. Opt. 27, 365–378 (1988).
[CrossRef] [PubMed]

R. K. Hanson, P. K. Falcone, “Temperature Measurement Technique for High-Temperature Gases Using a Tunable Diode Laser,” Appl. Opt. 17, 2477–2480 (1978).
[CrossRef] [PubMed]

Appl. Phys. B (3)

H. Becker et al., “Investigation of Flame Structure and Burning Behaviour in an IC Engine Simulator by 2D-LIF of OH Radicals,” Appl. Phys. B 50, 473–478 (1990).
[CrossRef]

R. Suntz, H. Becker, P. Monkhouse, J. Wolfrum, “Two-Dimensional Visualization of the Flame Front in an Internal Combustion Engine by Laser-Induced Fluorescence of OH Radicals,” Appl. Phys. B 47, 287–293 (1988).
[CrossRef]

H. Neckel, J. Wolfrum, “IR Diode Laser Measurements of the NH3(ν2) Band at Different Temperatures,” Appl. Phys. B 49, 85–89 (1989).
[CrossRef]

Ber. Bunsenges. Phys. Chem. (2)

T. Dreier, B. Lange, J. Wolfrum, M. Zahn, F. Behrendt, J. Warnatz, “Comparison of CARS Measurements and Calculations of the Structure of Laminar Methane-Air Counterflow Diffusion Flames,” Ber. Bunsenges. Phys. Chem. 90, 1010–1015 (1986).
[CrossRef]

B. Raffel, J. Wolfrum, “Infrared Laser Induced Ignition of Gas Mixtures,” Ber. Bunsenges. Phys. Chem. 90, 997–1001 (1986).
[CrossRef]

Chem. Phys. Lett. (3)

R. Schwarzwald, P. Monkhouse, J. Wolfrum, “Picosecond Fluorescence Lifetimes Measurement of the OH Radical in an Atmospheric Pressure Flame,” Chem. Phys. Lett. 142, 15–18 (1987).
[CrossRef]

R. Schwarzwald, P. Monkhouse, J. Wolfrum, “Fluorescence Lifetimes for Nitric Oxide in Atmospheric Pressure Flames Using Picosecond Excitation,” Chem. Phys. Lett. 158, 60–64 (1989).
[CrossRef]

M. Kollner, P. Monkhouse, J. Wolfrum, “Time-Resolved LIF of OH (A2∑ v′ = 1 and v′ = 0) in Atmospheric Pressure Flames Using Picosecond Excitation,” Chem. Phys. Lett. 168, 355–360 (1990).
[CrossRef]

Combust. Sci. Tech. (1)

L. A. Melton, J. F. Verdieck, “Vapor/Liquid Vizualization for Fuel Sprays,” Combust. Sci. Tech. 42, 217–222 (1985).
[CrossRef]

J. Mol. Spectrosc. (1)

H. Kanamori, J. E. Buttler, K. Kawaguchi, K. C. Yamada, E. Hirota, “Infrared Diode Laser Kinetic Spectroscopy of Transient Molecules Produced by Excimer Laser Photolysis: Application to the SO Radical,” J. Mol. Spectrosc. 113, 262–268 (1985).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (3)

F. W. Taylor, “Spectral Data for the ν2 Bands of Ammonia with Applications to Radiative Transfer in the Atmosphere of Jupiter,” J. Quant. Spectrosc. Radiat. Transfer 13, 1181–1217(1973).
[CrossRef]

G. H. Dieke, H. M. Crosswhite, “The Ultraviolet Bands of OH: Fundamental Data,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962).
[CrossRef]

A. Goldman, J. R. Gillis, “Spectral Line Parameters for the A2∑—X2Π(0,0) Band of OH for Atmospheric and High Temperatures,” J. Quant. Spectrosc. Radiat. Transfer 25, 111–135 (1981):
[CrossRef]

Opt. Eng. (1)

M. G. Allen, R. K. Hanson, “Planar Laser-Induced-Fluorescence Monitoring of OH in a Spray Flame,” Opt. Eng. 25, 1309–1311 (1986).

Opt. Lett. (2)

Proc. IEEE (1)

A. Kaldor, R. L. Woodin, “Applications of Lasers to Chemical Processing,” Proc. IEEE 70, 565–578 (1982).
[CrossRef]

Prog. Astronaut. Aeronaut. (1)

R. J. Cattolica, D. A. Stephenson, “Two-Dimensional Imaging of Flame Temperature Using Laser-Induced Fluorescence,” Prog. Astronaut. Aeronaut. 95, 714–721 (1985).

Prog. Energy Combust. Sci. (1)

H. Tsuji, “Counterflow Diffusion Flames,” Prog. Energy Combust. Sci. 8, 93–119 (1982).
[CrossRef]

TECFLAM Seminar (1)

J. Wolfrum, “Chemische Elementarprozesse bei der Bildung und Beseitigung von Schadstoffen in Verbrennungsvorgängen,” TECFLAM Seminar 1, 7–21 (1985).

VDI Ber. (1)

W. Hentschel, “Application of Lasers for in-Cylinder Studies and Flow Visualization” (in German), VDI Ber. 617, 347–376 (1986).

Z. Phys. Chem. Neue Folge (2)

B. Raffel, J. Wolfrum, “Spatial and Time Resolved Observation of CO2-Laser Induced Explosions of O2/O3 Mixtures in Cylindrical Cells,” Z. Phys. Chem. Neue Folge 161, 43–59 (1989).
[CrossRef]

U. Maas, J. Warnatz, “Simulation of Thermal Ignition Processes in Two-Dimensional Geometries,” Z. Phys. Chem. Neue Folge 161, 61–81 (1989).
[CrossRef]

Other (24)

R. K. Lyon, “Method for the reduction of the concentration of NO in combustion effluence using ammonia,” U.S. Patent3,900,554 (1975).

M. Gehring, K. Hoyermann, H. J. Schacke, J. Wolfrum, “Direct Studies of Some Elementary Steps for the Formation and Destruction of Nitric Oxide in the H–N–O-System,” in Fourteenth International Symposium on Combustion (Combustion Institute, Pittsburgh, 1973), pp. 99–105.
[CrossRef]

S. M. Schoenung, R. K. Hanson, “Temporally and Spatially Resolved Measurements of Fuel Mole Fraction in a Turbulent CO Diffusion Flame,” in Nineteenth International Symposium on Combustion (Combustion Institute, Pittsburgh, 1982), pp. 449–458.

F. A. Williams, “Turbulent Mixing in Non-Reactive and Reactive Flows,” in “Complex Chemical Reaction Systems,” S. N. B. Murphy, Ed. (Plenum, New York, 1975), p. 189.

K. N. C. Bray, “Recent Advances in Theoretical Descriptions of Turbulent Diffusion Flames,” in Book, Springer Series in Chemical Physics, Vol. 47, J. Warnatz, W. Jager, Eds. (Springer-Verlag, Berlin, 1987), pp. 356–375.

N. Peters, “Laminar Flamelet Concepts in Turbulent Combustion,” in Twenty-First International Symposium on Combustion (The Combustion Institute, Pittsburgh, 1986), pp. 1231–1250.

H. Wolf, W. J. Riedel, in Power Plants “NH3-Measurements in Power Plants with DeNOx Installations,” in Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Preier, G. Schmidtke, G. Restelli, Eds. (Reidel, Dordrecht, The Netherlands, 1987), pp. 120–126.
[CrossRef]

K. Gregorius, H. Schorner, “Stack Gas Control by Diode Laser Spectrometer in Power Plants,” in Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Preier, G. Schmidtke, G. Restelli, Eds. (Reidel, Dordrecht, The Netherlands, 1987), pp. 127–133.
[CrossRef]

H. Tsuji, I. Yamaoka, “Structure Analysis of Counterflow Diffusion Flames in the Forward Stagnation Region of a Porous Cylinder,” in Thirteenth International Symposium on Combustion (Combustion Institute, Pittsburgh, 1971), pp. 723–731.
[CrossRef]

G. Dixon-Lewis et al., “Calculation of the Structure and Extinction Limit of a Methane-Air Counterflow Diffusion Flame in the Forward Stagnation Region of a Porous Cylinder,” in Twentieth International Symposium on Combustion (The Combustion Institute, Pittsburgh, 1984), pp. 1893–1904.

T. Dreier, B. Lange, J. Wolfrum, M. Zahn, F. Behrendt, J. Warnatz, “CARS Measurements and Computations of the Structure of Laminar Stagnation-Point Methane-Air Counterflow Diffusion Flames,” in Twenty-First International Symposium on Combustion (Combustion Institute, Pittsburgh, 1986), pp. 1729–1736.

F. Behrendt, “Simulation laminarer Gegenstrom-Diffusions-flammen unter Verwendung detaillierter Reaktionsmechanismen,” Dissertation, U. Heidelberg (1989).

U. Maas, B. Raffel, J. Wolfrum, J. Warnatz, “Observation and Simulation of Laser Induced Ignition Processes in O2–O3 and H2–O2 Mixtures,” in Twenty-First International Symposium on Combustion (Combustion Institute, Pittsburgh, 1986), pp. 1869–1876.

R. Schwarzwald, P. Monkhouse, J. Wolfrum, “Fluorescence Studies of OH and CN Radicals in Atmospheric Pressure Flames Using Picosecond Excitation,” in Twenty-Second International Symposium on Combustion (Combustion Institute, Pittsburgh, 1988), pp. 1413–1420.

M. E. A. Bardsley, P. G. Felton, F. V. Bracco, “2-D Visualization of Liquid and Vapor Fuel in an I.C. Engine,” SAE Paper 880521 (1988).

M. E. A. Bradsley, P. G. Felton, F. V. Bracco, “2-D Visualization of a Hollow-Cone Spray in a Cup-in-Head, Ported, I.C. Engine,” SAE Paper 890315 (1989).

M. G. Allen, R. K. Hanson, “Digital Imaging of Species Concentration Fields in Spray Flames,” in Twenty-First International Symposium on Combustion (Combustion Institute, Pittsburgh, 1986), pp. 1755–1762.

A. O. zur Loye, F. V. Bracco, “Two-Dimensional Visualization of Premixed-Charge Flame Structure in an IC Engine,” SAE Paper 870454 (1988).

T. A. Baritaud, R. M. Green, “A 2-D Flame Visualization Technique Applied to the I.C. Engine,” SAE Paper 860025 (1986).

G. F. W. Ziegler, A. Zettlitz, P. Meinhardt, R. Herweg, R. Maly, W. Pfister, “Cycle-Resolved Two-Dimensional Flame and Flow Visualization in a Spark-Ignition Engine,” SAE Paper 881634 (1988).

F. W. Schipperijn, R. Nagasaka, R. F. Sawyer, R. M. Green, “Imaging of Engine Flow and Combustion Processes,” SAE Paper 881631 (1988).

P. G. Felton, J. Mantzaras, D. S. Bomse, R. L. Woodin, “Initial Two-Dimensional Laser Induced Fluorescence Measurements of OH Radicals in an Internal Combustion Engine,” SAE Paper 881633 (1988).

W. Hentschel, H. Hesse, K. P. Schindler, “Experimental Investigation of Spray Formation and Combustion in a Real Diesel Engine,” Autotech 89, Birmingham (1989), paper 399.

P. G. Felton, J. Mantzaras, M. E. A. Bardsley, F. V. Bracco, “2-D Visualization of Liquid Fuel Injection in an Internal Combustion Engine,” SAE Paper 872074 (1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (22)

Fig. 1
Fig. 1

Infrared diode laser absorption spectra of NH3 at STP (—) and 13CO2 laser emission lines (- - -).

Fig. 2
Fig. 2

Schematic of the 13CO2 laser-based NH3 detection system: D, detector; SA, spectrum analyzer; BS, beam splitter.

Fig. 3
Fig. 3

Residual ammonia in a power plant (300 MW) during experiments with secondary NO reduction (• • conventional chemical analysis).

Fig. 4
Fig. 4

Temporal progress of NH3 concentration in a chemical plant measured by the laser system (▲) and NDIR instrument (○).

Fig. 5
Fig. 5

Temporal progress of NH3 and NO in a waste incinerator over 3 h during the reduction with urea.

Fig. 6
Fig. 6

Experimental setup for the investigation of CO2 laser-induced ignition processes by tunable IR diode laser spectroscopy.

Fig. 7
Fig. 7

Typical experimental transmittance spectra of the CO lines 1R4 at 2135.3131 cm−1 (left) and 0P2 at 2135.5466 cm−1 (right) during ignition and flame propagation. Indicated are the time delays from the laser pulse and the temperatures evaluated from the transmittance ratios.

Fig. 8
Fig. 8

Development of the temperature by the CO2 laser-induced ignition of a CH3OH(45%)/O2(50%)/CO(5%) mixture in different distances from the ignition source.

Fig. 9
Fig. 9

Experimental setup for 2-D measurements of OH radical concentrations and temperatures in a counterflow diffusion flame.

Fig. 10
Fig. 10

Lower state population of several transitions of the OH radical as a function of temperature.

Fig. 11
Fig. 11

Accuracy of the 2-D LIF temperature measurements (see text).

Fig. 12
Fig. 12

Experimental arrangement for measuring UV absorption spectra of OH radicals with high spatial resolution in counterflow diffusion flames: KDP, frequency doubling crystal; PMT, photo-multiplier tube; PD, photodiode.

Fig. 13
Fig. 13

Temperature profile in a counterflow diffusion flame (a = 125 s−1, vCH4 = 11,4 cm/s); ○. measurement (CARS), —, simulation.

Fig. 14
Fig. 14

Absolute 2-D OH radical concentration and temperature distribution in a CH4 air counterflow diffusion flame (a = 125 s−1, vCH4 = 11.4 cm/s), imaged after excitation of the (3—0) vibrational band of the AX system with a tunable KrF excimer laser, detected with an image intensified CCD camera and calibrated with absorption measurements.

Fig. 15
Fig. 15

Absolute OH radical concentration profile in a counterflow diffusion flame (a = 125 s−1, vCH4 = 11.4 cm/s); ○, absorption and light sheet measurements, —, simulation.

Fig. 16
Fig. 16

Experimental setup for fluorescence lifetime measurements in atmospheric pressure flames: QDL, quench dye laser; DFDL, distributed feedback dye laser; G, holographic grating; T, beam translation prism; SHG, frequency doubler.

Fig. 17
Fig. 17

Dependence of OH (A2+,v′ = 0) lifetime on the height above the burner head in an atmospheric pressure CH4–air counterflow diffusion flame (a = 15 S−1,vCH4 = 1.6 cm/s).

Fig. 18
Fig. 18

Optical access of the transparent Volkswagen diesel engine for light sheet diagnostics.

Fig. 19
Fig. 19

Experimental setup for 2-D LIF at the transparent diesel engine: L, lens; M, mirror.

Fig. 20
Fig. 20

Two-dimensional Mie scattering for visualization of fuel injection through a five-hole nozzle.

Fig. 21
Fig. 21

Two-dimensional LIF of Diesel vapor for visualization of combustion in a Diesel engine.

Fig. 22
Fig. 22

Single shot emission spectrum of diesel fuel excited by a XeCl excimer laser.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I ( ν ) = I 0 ( ν ) exp [ - a ( ν ) c l ] ,
a ( ν 1 ) = a 1 + a NH 3 ,
a ( ν 2 ) = a 1 .
I ( ν 1 ) / I ( ν 2 ) = I 0 ( ν 1 ) / I 0 ( ν 2 ) exp ( - a NH 3 c l ) ,
c = - 1 / ( a NH 3 l ) ln [ I ( ν 1 ) / I ( ν 2 ) I R ( ν 2 ) / I R ( ν 1 ) ] .
a NH 3 = S ( T ) g ( T , P ) { p [ ( ν 1 - ν 0 ) 2 + g ( T , P ) 2 ] } - 1 ,
g ( T , P ) = P / P 0 [ α - β T ] ,
S ( T ) = S 0 ν ν 0 - 1 exp ( - h c E / k T ) [ 1 - exp ( - h c ν / k T ) ] g H Q - 1 ,
R = ln ( T 1 ) / ln ( T 2 ) S 1 / S 2 .
S 1 / S 2 = [ ( v 1 + 1 ) m 1 exp ( - E 1 / k T ) ] / [ ( v 2 + 1 ) m 2 exp ( - E 2 / k T ) ] ,
T ( x , y ) = F 2 - F 1 k { ln [ S 1 ( x , y ) S 2 ( x , y ) ] + ln ( B 2 g 2 Y 2 B 1 g 1 Y 1 ) + ln [ I 2 ( x , y ) I 1 ( x , y ) ] + ln [ ɛ 2 ( x , y ) ɛ 1 ( x , y ) ] } .

Metrics