Abstract

We investigate simultaneous excitation and fluorescence detection of OH and H in flames, using frequency-doubled (308-nm) and frequency-tripled (205-nm) beams generated using a single dye-laser system.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Westblom, M. Alden, “Simultaneous Multiple Species Detection in a Flame Using Laser-Induced Fluorescence,” Appl. Opt. 28, 2592–2599 (1989).Reprinted in Appl. Opt. 29, 4844–4851 (1990).
    [CrossRef] [PubMed]
  2. J. E. M. Goldsmith, “Multiphoton Excitation Techniques in Combustion Diagnostics,” Mater. Res. Soc. Symp. Proc. 117, 193–201 (1988); J. E. M. Goldsmith, N. M. Laurendeau, “Single-Laser Two-Step Fluorescence Detection of Atomic Hydrogen in Flames,” Opt. Lett. (in press).
    [CrossRef]
  3. J. Bokor, R. R. Freeman, J. C. White, R. H. Storz, “Two-Photon Excitation of the n = 3 Level in H and D Atoms,” Phys. Rev. A 24, 612–614 (1981).
    [CrossRef]
  4. R. P. Lucht, J. T. Salmon, G. B. King, D. W. Sweeney, N. M. Laurendeau, “Two-Photon-Excited Fluorescence Measurement of Hydrogen Atoms in Flames,” Opt. Lett. 8, 365–367 (1983).
    [CrossRef] [PubMed]
  5. U. Meier, K. Kohse-Hoinghaus, Th. Just, “H and O Atom Detection for Combustion Applications: Study of Quenching and Laser Photolysis Effects,” Chem. Phys. Lett. 126, 567–573 (1986).
    [CrossRef]
  6. J. E. M. Goldsmith, “Protochemical Effects in 205-nm, Two-Photon-Excited Fluorescence Detection of Atomic Hydrogen in Flames,” Opt. Lett. 11, 416–418 (1986).
    [CrossRef] [PubMed]
  7. J. E. M. Goldsmith, “Two-Photon-Excited Stimulated Emission from Atomic Hydrogen in Flames,” J. Opt. Soc. Am. B 6, 1979–1985 (1989).
    [CrossRef]
  8. J. A. Coxon, “Optimum Molecular Constants and Term Values for the X2Π(ν ≤ 5) and A2∑+(ν ≤ 3) States of OH,” Can. J. Phys. 58, 933–949 (1980).
    [CrossRef]
  9. J. E. M. Goldsmith, “Photochemical Effects in 243-nm Two-Photon Excitation of Atomic Hydrogen in Flames,” Appl. Opt. 28, 1206–1213 (1989).
    [CrossRef] [PubMed]
  10. I. J. Wysong, J. B. Jeffries, D. R. Crosley, “Laser-Induced Fluorescence of O(3p3P), O2, and NO near 226 nm: Photolytic Interferences and Simultaneous Excitation in Flames,” Opt. Lett. 14, 767–769 (1989).
    [CrossRef] [PubMed]
  11. A. W. Miziolek, M. A. DeWilde, “Multiphoton Photochemical and Collisional Effects During Oxygen-Atom Flame Detection,” Opt. Lett. 9, 390–392 (1984).
    [CrossRef] [PubMed]
  12. J. B. Jeffries, R. A. Copeland, G. P. Smith, D. R. Crosley, “Multiple Species Laser-Induced Fluorescence in Flames,” in Twenty-First Symposium (Internal) on Combustion (The Combustion Institute, Pittsburgh, 1986), pp. 1709–1718.

1989 (4)

1988 (1)

J. E. M. Goldsmith, “Multiphoton Excitation Techniques in Combustion Diagnostics,” Mater. Res. Soc. Symp. Proc. 117, 193–201 (1988); J. E. M. Goldsmith, N. M. Laurendeau, “Single-Laser Two-Step Fluorescence Detection of Atomic Hydrogen in Flames,” Opt. Lett. (in press).
[CrossRef]

1986 (2)

U. Meier, K. Kohse-Hoinghaus, Th. Just, “H and O Atom Detection for Combustion Applications: Study of Quenching and Laser Photolysis Effects,” Chem. Phys. Lett. 126, 567–573 (1986).
[CrossRef]

J. E. M. Goldsmith, “Protochemical Effects in 205-nm, Two-Photon-Excited Fluorescence Detection of Atomic Hydrogen in Flames,” Opt. Lett. 11, 416–418 (1986).
[CrossRef] [PubMed]

1984 (1)

1983 (1)

1981 (1)

J. Bokor, R. R. Freeman, J. C. White, R. H. Storz, “Two-Photon Excitation of the n = 3 Level in H and D Atoms,” Phys. Rev. A 24, 612–614 (1981).
[CrossRef]

1980 (1)

J. A. Coxon, “Optimum Molecular Constants and Term Values for the X2Π(ν ≤ 5) and A2∑+(ν ≤ 3) States of OH,” Can. J. Phys. 58, 933–949 (1980).
[CrossRef]

Alden, M.

Bokor, J.

J. Bokor, R. R. Freeman, J. C. White, R. H. Storz, “Two-Photon Excitation of the n = 3 Level in H and D Atoms,” Phys. Rev. A 24, 612–614 (1981).
[CrossRef]

Copeland, R. A.

J. B. Jeffries, R. A. Copeland, G. P. Smith, D. R. Crosley, “Multiple Species Laser-Induced Fluorescence in Flames,” in Twenty-First Symposium (Internal) on Combustion (The Combustion Institute, Pittsburgh, 1986), pp. 1709–1718.

Coxon, J. A.

J. A. Coxon, “Optimum Molecular Constants and Term Values for the X2Π(ν ≤ 5) and A2∑+(ν ≤ 3) States of OH,” Can. J. Phys. 58, 933–949 (1980).
[CrossRef]

Crosley, D. R.

I. J. Wysong, J. B. Jeffries, D. R. Crosley, “Laser-Induced Fluorescence of O(3p3P), O2, and NO near 226 nm: Photolytic Interferences and Simultaneous Excitation in Flames,” Opt. Lett. 14, 767–769 (1989).
[CrossRef] [PubMed]

J. B. Jeffries, R. A. Copeland, G. P. Smith, D. R. Crosley, “Multiple Species Laser-Induced Fluorescence in Flames,” in Twenty-First Symposium (Internal) on Combustion (The Combustion Institute, Pittsburgh, 1986), pp. 1709–1718.

DeWilde, M. A.

Freeman, R. R.

J. Bokor, R. R. Freeman, J. C. White, R. H. Storz, “Two-Photon Excitation of the n = 3 Level in H and D Atoms,” Phys. Rev. A 24, 612–614 (1981).
[CrossRef]

Goldsmith, J. E. M.

Jeffries, J. B.

I. J. Wysong, J. B. Jeffries, D. R. Crosley, “Laser-Induced Fluorescence of O(3p3P), O2, and NO near 226 nm: Photolytic Interferences and Simultaneous Excitation in Flames,” Opt. Lett. 14, 767–769 (1989).
[CrossRef] [PubMed]

J. B. Jeffries, R. A. Copeland, G. P. Smith, D. R. Crosley, “Multiple Species Laser-Induced Fluorescence in Flames,” in Twenty-First Symposium (Internal) on Combustion (The Combustion Institute, Pittsburgh, 1986), pp. 1709–1718.

Just, Th.

U. Meier, K. Kohse-Hoinghaus, Th. Just, “H and O Atom Detection for Combustion Applications: Study of Quenching and Laser Photolysis Effects,” Chem. Phys. Lett. 126, 567–573 (1986).
[CrossRef]

King, G. B.

Kohse-Hoinghaus, K.

U. Meier, K. Kohse-Hoinghaus, Th. Just, “H and O Atom Detection for Combustion Applications: Study of Quenching and Laser Photolysis Effects,” Chem. Phys. Lett. 126, 567–573 (1986).
[CrossRef]

Laurendeau, N. M.

Lucht, R. P.

Meier, U.

U. Meier, K. Kohse-Hoinghaus, Th. Just, “H and O Atom Detection for Combustion Applications: Study of Quenching and Laser Photolysis Effects,” Chem. Phys. Lett. 126, 567–573 (1986).
[CrossRef]

Miziolek, A. W.

Salmon, J. T.

Smith, G. P.

J. B. Jeffries, R. A. Copeland, G. P. Smith, D. R. Crosley, “Multiple Species Laser-Induced Fluorescence in Flames,” in Twenty-First Symposium (Internal) on Combustion (The Combustion Institute, Pittsburgh, 1986), pp. 1709–1718.

Storz, R. H.

J. Bokor, R. R. Freeman, J. C. White, R. H. Storz, “Two-Photon Excitation of the n = 3 Level in H and D Atoms,” Phys. Rev. A 24, 612–614 (1981).
[CrossRef]

Sweeney, D. W.

Westblom, U.

White, J. C.

J. Bokor, R. R. Freeman, J. C. White, R. H. Storz, “Two-Photon Excitation of the n = 3 Level in H and D Atoms,” Phys. Rev. A 24, 612–614 (1981).
[CrossRef]

Wysong, I. J.

Appl. Opt. (2)

Can. J. Phys. (1)

J. A. Coxon, “Optimum Molecular Constants and Term Values for the X2Π(ν ≤ 5) and A2∑+(ν ≤ 3) States of OH,” Can. J. Phys. 58, 933–949 (1980).
[CrossRef]

Chem. Phys. Lett. (1)

U. Meier, K. Kohse-Hoinghaus, Th. Just, “H and O Atom Detection for Combustion Applications: Study of Quenching and Laser Photolysis Effects,” Chem. Phys. Lett. 126, 567–573 (1986).
[CrossRef]

J. Opt. Soc. Am. B (1)

Mater. Res. Soc. Symp. Proc. (1)

J. E. M. Goldsmith, “Multiphoton Excitation Techniques in Combustion Diagnostics,” Mater. Res. Soc. Symp. Proc. 117, 193–201 (1988); J. E. M. Goldsmith, N. M. Laurendeau, “Single-Laser Two-Step Fluorescence Detection of Atomic Hydrogen in Flames,” Opt. Lett. (in press).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. A (1)

J. Bokor, R. R. Freeman, J. C. White, R. H. Storz, “Two-Photon Excitation of the n = 3 Level in H and D Atoms,” Phys. Rev. A 24, 612–614 (1981).
[CrossRef]

Other (1)

J. B. Jeffries, R. A. Copeland, G. P. Smith, D. R. Crosley, “Multiple Species Laser-Induced Fluorescence in Flames,” in Twenty-First Symposium (Internal) on Combustion (The Combustion Institute, Pittsburgh, 1986), pp. 1709–1718.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Energy levels and transitions in H and OH relevant to the fluorescence detection techniques discussed in this Letter. The shorter arrows inside the wide 308- and 205-nm arrows represent the production of the UV wavelengths by frequency doubling and tripling the 615-nm dye-laser wavelength, respectively.

Fig. 2
Fig. 2

Apparatus used to investigate simultaneous excitation of OH and H in flames using frequency doubled and frequency tripled beams from a single dye–laser system.

Fig. 3
Fig. 3

Excitation spectra (arbitrary units) recorded simultaneously through the 656-nm interference filter (top) and UV filter (bottom), irradiating a 35-Torr equivalence-ratio 0.9 hydrogen–oxygen–argon flame with the frequency doubled and frequency tripled laser beams (actual wavelengths one-half and one-third that of the dye laser wavelength, respectively).

Metrics